LeetCode - 解题笔记 - 144 - Binary Tree Preorder Traversal

本文探讨了二叉树的先序遍历,包括标准的递归实现以及 Morris 遍历法的优化版本,重点介绍了这两种方法的时间复杂度、空间复杂度,并提供了Python代码实例。通过比较,展示了非递归Morris遍历在节省空间上的优势。
摘要由CSDN通过智能技术生成

Solution 1

二叉树的先序遍历,即先中间再左后右,标准的递归实现。

题目中还希望使用回溯实现,实际上就是利用stack显式替换递归过程中的函数调用栈。然后通过从stack的pop逐渐从底层返回上层。这里就不实现了。

  • 时间复杂度: O ( n ) O(n) O(n),其中 n n n是输入树的节点个数,遍历一次
  • 空间复杂度: O ( n ) O(n) O(n),其中 n n n是输入树的节点个数,遍历一次的所有调用占用(最坏情况)
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<int> preorderTraversal(TreeNode* root) {
        vector<int> ans;
        if (root != nullptr) {
            this->preorder(root, ans);
        }
        
        return ans;
    }
    
private:
    void preorder(TreeNode* node, vector<int> & ans) {
        ans.push_back(node->val);
        if (node->left != nullptr) {
            this->preorder(node->left, ans);
        }
        if (node->right != nullptr) {
            this->preorder(node->right, ans);
        } 
    }
};

Solution 2

Morris遍历法,优势和实现思路可以参考 0094. Binary Tree Inorder Traversal

  • 时间复杂度: O ( n ) O(n) O(n),其中 n n n是输入树的节点个数,至多遍历两次
  • 空间复杂度: O ( n ) O(n) O(n),仅维护常数个状态变量
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<int> preorderTraversal(TreeNode* root) {
        vector<int> ans;
        TreeNode* cur = root;
        // TreeNode* pre = nullptr;
        while (cur != nullptr) {
            ans.push_back(cur->val);
            if (cur->left == nullptr) {
                cur = cur->right;
            }
            else {
                auto pre = cur->left;
                while (pre->right != nullptr) { pre = pre->right; }
               
                pre->right = cur->right;
            
                auto temp = cur;
                cur = cur->left;
                temp->left = nullptr;
            }
        }

        return ans;
    }
};

Solution 3

Solution 1的Python实现

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
        
        def preorder(node: Optional[TreeNode]) -> None:
            nonlocal ans
            
            ans.append(node.val)
            
            if node.left is not None: preorder(node.left)
            if node.right is not None: preorder(node.right)
            
            
        ans = []
        if root is not None: preorder(root)
            
        return ans

Solution 4

Solution 2的Python实现

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
        
        def preorder(node: Optional[TreeNode]) -> None:
            nonlocal ans
            
            ans.append(node.val)
            
            if node.left is not None: preorder(node.left)
            if node.right is not None: preorder(node.right)
            
            
        ans = []
        # if root is not None: preorder(root)
        
        cur = root
        
        while cur:
            ans.append(cur.val)
            if not cur.left:
                cur = cur.right
            else:
                pre = cur.left
                while pre.right: pre = pre.right
                    
                pre.right = cur.right
                temp = cur
                cur = cur.left
                temp.left = None
            
        return ans
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值