LeetCode - 解题笔记 - 198 - House Robber

该博客介绍了如何使用动态规划解决一个特殊的背包问题,确保状态转移基于前一个间隔状态。给出了C++和Python两种语言的解决方案,时间复杂度为O(n),空间复杂度为O(1)。通过维护最新两个状态,实现了空间优化。
摘要由CSDN通过智能技术生成

Solution 1

一个变体的背包问题。需要保证转移是前一个间隔状态。

状态转移思路:来自前一个状态(当前不选择),或者前一个间隔状态和当前状态的加和(当前选择)

状态转移方程为: d p [ i ] = max ⁡ ( d p [ i − 1 ] , d p [ i − 2 ] + n u m [ i ] ) dp[i] = \max (dp[i - 1], dp[i - 2] + num[i]) dp[i]=max(dp[i1],dp[i2]+num[i])

不过考虑到整个过程中只需要维护最新的两个状态,因此可以简化上述结果的储存过程

  • 时间复杂度: O ( n ) O(n) O(n),其中 n n n为输入的长度
  • 空间复杂度: O ( 1 ) O(1) O(1),仅维护常数个状态量
class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.size() <= 1) {
            // 从1判定比较方便
            return nums.size() == 0? 0: nums[0];
        }
        
//         vector<int> ans = {nums[0], max(nums[0], nums[1])};
//         for (int i = 2; i < nums.size(); ++i) {
//             ans.push_back(max(ans[i - 1], ans[i - 2] + nums[i]));
//         }
        
//         return ans[nums.size() - 1];
        
        int first = nums[0], second = max(nums[0], nums[1]);
        for (int i = 2; i < nums.size(); ++i) {
            int temp = second;
            second = max(second, first + nums[i]);
            first = temp;
        }
        
        return second;
    }
};

Solution 2

Solution 1的Python实现

class Solution:
    def rob(self, nums: List[int]) -> int:
        if len(nums) <= 1:
            return 0 if len(nums) == 0 else nums[0]
        
        first, second = nums[0], max(nums[0], nums[1])
        for i in range(2, len(nums)):
            temp = second
            second = max(second, first + nums[i])
            first = temp
            
        return second
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值