决策树

决策树学习通常包括三个步骤:特征选择、决策树的生成和决策树的修剪。

特征选择

信息增益
“信息熵”(information entropy)是度量样本集合纯度最常用的一种指标。

Ent(D)=k=1|y|pklog2pk

信息增益:假定离散属性a有V个可能的取值{a1, a2, …, av}, 若使用a来对样本集D进行划分,则信息增益计算公式为:
Gain(D,a)=Ent(D)v=1V|Dv||D|Ent(Dv)

我们可以使用信息增益来进行决策树的划分属性选择,ID3算法就是使用的该方法。

增益率
a信息增益准则对可取数目较多的属性有所偏好, 为减少这种偏好可能带来的不利影响, 可以使用“增益率”(gain ratio)来选择最优划分属性, C4.5就是使用的该方法。
增益率:

Gain_ratio(D,a)=Gain(D,a)IV(a)

其中:

IV(a)=v=1V|Dv||D|log2|Dv||D|

C4.5是先找出信息增益高于平均水平的属性,再从中选择增益最高的。

基尼指数
CART决策树使用“基尼指数”来选择划分属性,数据集D的纯度可用基尼值来度量:

Gini(D)=k=1|y|kkpkpk=1k=1|y|p2k

直观来说,Gini(D)反映了从数据集D中随机抽取两个样本,其类别标记不一致的概率, Gini(D)越小,则数据集D的纯度越高。
属性a的基尼指数定义为:
Gini_index(D,a)=v=1V|Dv||D|Gini(Dv)

剪枝处理

剪枝(pruning)是决策树学习算法对付“过拟合”的主要手段, 决策树剪枝的基本策略有“预剪枝”(prepruning)和“后剪枝”(post-pruning),预剪枝是在决策树生成过程中,若对节点的划分不能带来决策树泛化性能的提升,则停止划分并将当前节点标记为叶节点;后剪枝则是先从训练集生成一颗完整的决策树,然后自低向上进行剪枝。
预剪枝降低了过拟合的风险,显著减少了决策树的训练时间开销和预测时间开销。预剪枝基于“贪心”算法,增加了决策树欠拟合的风险。后剪枝决策树的欠拟合的风险很小,泛化性能往往优于预剪枝决策树,但训练时间开销相对要大的多。

连续与缺失值

对于连续属性,我们可以使用离散化技术,最简单的策略是采用二分法。
给定样本集D和连续属性a, 假设a在D上出现了n个不同的取值,将这些值从小到大进行排列,选择n-1个划分点进行比较,选取最优划分。

Ta={ai+ai+12 1in1}

a对于缺失值,在划分属性选择时,可以忽略缺失该属性的数据。 在进行样本划分时,可以划分到所有的子节点。

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值