为什么学习线段树 and 算法作用
查询 or 修改 一段区间或者单点,由O(n) 到 O(logn)
算法原理
为了理解一段区间的 数字 修改 和查询的操作
我们每次将一段区间 二分 成两段
如果 需要修改(查询)的区间 包含当前线段,直接对这一段的数据进行 某种操作
如果 需要修改(查询)的区间 覆盖了当前线段的一部分,向下递归 :1.直到完全覆盖——向上返回数据 2.没有覆盖——跳过
每次更新一层的信息,它的父亲节点信息 因为子节点信息改变了,自己也需要updata函数更新一下
如此利用递归原理逐层寻找自己需要的区间,不需要的直接跳过
因为每段区间都是标准二分,所以最多分出 logn 层,递归修改与查询 也就只有 logn 次
这样的修改与查询只能保证到 单点修改 , 区间查询
为了区间修改需要引入一个lazy标记的概念 可以想象成 数学里 的 delta 变量
lazy标记的使用(pushdown 下推,函数名表明它的作用)
第二次覆盖②区间的 (全部or部分) 时,lazy传递到下一层,本层清空,其它区间同理
区间修改代码(这里是区间求和代码)(单点修改,不需要pushdown函数-直接取消即可,pushup是数据合并方式的函数对应需求修改
例如 取max)#include <bits/stdc++.h> #define ls (rt << 1) #define rs (rt << 1 | 1) using namespace std; const int maxn = 1e5 + 7; const int inf = 1e9 + 7; typedef long long ll; struct node{ int l, r; int attr; int lazy; }tree[maxn << 2]; void build(int l, int r, int rt){ tree[rt].l = l; tree[rt].r = r; tree[rt].lazy = 0; int mid = (l + r) >> 1; build(l, mid, ls); build(mid+1, r, rs); } void pushup(int rt){ tree[rt].attr = tree[ls].attr + tree[rs].attr; } void pushdown(int rt){ tree[ls].lazy += tree[rt].lazy; tree[rs].lazy += tree[rt].lazy; tree[rt].lazy = 0; tree[ls].attr += tree[ls].lazy * (tree[ls].r - tree[ls].l + 1); tree[rs].attr += tree[rs].lazy * (tree[rs].r - tree[rs].l + 1); } void updata(int l, int r, int L, int R, int v, int rt){ if(l <= L && R <= r){ tree[rt].attr += (R - L + 1) * v; tree[rt].lazy += v; return; } int mid = (L + R) >> 1; pushdown(rt); if(l <= mid) updata(l, r, L, mid, v, ls); if(r > mid) updata(l, r, mid+1, R, v, rs); pushup(rt); } int query(int l, int r, int L, int R, int rt){ if(l <= L && R <= r){ return tree[rt].attr; } int res = 0; int mid = (L + R) >> 1; pushdown(rt); if(l <= mid) query(l, r, L, mid, ls); if(r > mid) query(l, r, mid+1, R, rs); pushup(rt); } int main() { build(1, n, 1); }