连续介质热力学的能量守恒定律

力学有四大基本定律(“基本公理”,Eringen, 1980, P89-92):质量守恒原理、动量平衡原理、动量矩平衡原理、能量守恒原理。本节讨论连续介质的能量守恒定律,从全局形式出发,通过对动能、内能、热能和外力功的表述,得到局部形式的能量守恒定律。

1. 全局能量守恒定律

动能与内能之和的变化率等于外力的功率与单位时间内进入或流出系统的所有其他能量之和:
D D t ( K + E ) = W + ∑ i U i ( 4.2.1 ) \frac{{\rm D}}{{\rm D} t} (\mathscr{K} + \mathscr{E}) = \mathscr{W} + \sum_i \mathscr{U}_i \qquad (4.2.1) DtD(K+E)=W+iUi(4.2.1)

式中 K \mathscr{K} K E \mathscr{E} E W \mathscr{W} W分别为动能、内能和功率。 U i \mathscr{U}_i Ui表示进入或流出系统的第 i i i类能量(例如电能、化学能、热能)。这就是能量守恒的全局形式

式(4.2.1)还可写为:

K ˙ + E ˙ = W + Q ( 4.2.2 ) \dot{\mathscr{K}} + \dot{\mathscr{E}} = \mathscr{W} + Q \qquad (4.2.2) K˙+E˙=W+Q(4.2.2)

2. 热力学第一定律

为简单起见,我们只考虑具有热能 Q Q Q的系统,并考虑热静力学( K ˙ = 0 \dot{\mathscr{K}} =0 K˙=0),于是式(4.2.1)写为:
E ˙ = W + Q \dot{\mathscr{E}} = \mathscr{W} + Q E˙=W+Q

d E = E ˙ d t {\rm d} \mathscr{E} = \dot{\mathscr{E}}{\rm d}t dE=E˙dt δ W = W d t \delta \mathscr{W} = \mathscr{W} {\rm d} t δW=Wdt δ Q = Q d t \delta \mathscr{Q} = Q{\rm d} t δQ=Qdt,得到热力学第一定律:
d E = δ W + δ Q {\rm d} \mathscr{E} = \delta \mathscr{W} + \delta \mathscr{Q} dE=δW+δQ

3. 连续介质的局部能量守恒定律

动能为:
K = 1 2 ∫ V ρ v k v k d v ( 4.2.3 ) \mathscr{K} = \frac{1}{2} \int_V \rho v_k v_k {\rm d}v \qquad (4.2.3) K=21Vρvkvkdv(4.2.3)

对于连续介质我们假设存在一个单位质量的内能密度 ε \varepsilon ε
E = ∫ V ρ ε d v ( 4.2.4 ) \mathscr{E} = \int_V \rho \varepsilon {\rm d}v \qquad (4.2.4) E=Vρεdv(4.2.4)

计算动能和内能的物质导数:
K ˙ = ∮ V [ ρ v k a k d v + 1 2 v k v k D D t ( ρ d v ) ] ( 4.2. 3 ′ ) \dot{\mathscr{K}} =\oint_V \left[ \rho v_k a_k {\rm d}v + \frac{1}{2} v_k v_k \frac{{\rm D}}{{\rm D} t} (\rho {\rm d}v) \right] \qquad (4.2.3') K˙=V[ρvkakdv+21vkvkDtD(ρdv)](4.2.3)

E ˙ = ∫ V [ ρ ε ˙ d v + ε D D t ( ρ d v ) ] ( 4.2. 4 ′ ) \dot{\mathscr{E}} = \int_V \left[ \rho \dot{\varepsilon} {\rm d} v + \varepsilon \frac{{\rm D}}{{\rm D} t} (\rho {\rm d} v) \right] \qquad (4.2.4') E˙=V[ρε˙dv+εDtD(ρdv)](4.2.4)

在连续介质 V + S V+S V+S中,热量 Q Q Q可通过系统表面 S \mathscr{S} S进入系统,也可以通过系统内部的单位质量的分布热源 h h h 产生。令 q \mathbf{q} q为系统表面处的热量矢量并指向系统外部,在该点 x \mathbf{x} x处的外法线方向为 n \mathbf{n} n,于是可写出 Q Q Q的表达式:

Q = ∮ S q ⋅ n d a + ∫ V ρ h d v ( 4.2.3 ) Q = \oint_S \mathbf{q} \cdot \mathbf{n} {\rm d} a + \int_V \rho h {\rm d}v \qquad (4.2.3) Q=Sqnda+Vρhdv(4.2.3)

另一方面,外力的功率 W \mathscr{W} W 由表面力和体积力的功率之和组成,考虑非极性介质(Eringen, 1980, 中译本P121):

W = ∮ V ρ f ⋅ v d v + ∫ S t ( n ) ⋅ n d a = ∮ V ρ f k v k d v + ∫ S t l k v k n l d a ( 4.2.5 ) \mathscr{W} = \oint_V \rho \mathbf{f} \cdot \mathbf{v}{\rm d}v + \int_S \mathbf{t}_{\rm (n)} \cdot \mathbf{n} {\rm d}a = \oint_V \rho f_k v_k {\rm d}v + \int_S t_{lk} v_k n_l {\rm d}a \qquad (4.2.5) W=Vρfvdv+St(n)nda=Vρfkvkdv+Stlkvknlda(4.2.5)

式中表面力的计算用到了关系式 t ( n ) = t k l n k i l \mathbf{t}_{\rm (n)} = t_{kl} n_k \mathbf{i}_l t(n)=tklnkil(Eringen,1980,P105)。

可以通过Gauss定理将外力功 W \mathscr{W} W和热量 Q Q Q的面积分转换为体积分:

W = ∫ V ( t l k , l v k + t l k v k , l + ρ f k v k ) d v ( 4.2.6 ) \mathscr{W} = \int_V \left( t_{lk,l} v_k + t_{lk} v_{k,l} + \rho f_k v_k \right) {\rm d}v \qquad (4.2.6) W=V(tlk,lvk+tlkvk,l+ρfkvk)dv(4.2.6)

Q = ∫ V ( q k , k + ρ h ) d v ( 4.2. 6 ′ ) Q = \int_V \left( q_{k,k} + \rho h \right) {\rm d}v \qquad (4.2.6') Q=V(qk,k+ρh)dv(4.2.6)

将式(4.2.3’)(4.2.4’)(4.2.6)(4.2.6’)代入(4.2.2),并使用局部动量平衡原理和局部能量守恒原理,整理得:

ρ ε ˙ = t k l v l , k + q k , k + ρ h ( 4.2.8 ) \rho \dot{\varepsilon} = t_{kl} v_{l,k} + q_{k,k} + \rho h \qquad (4.2.8) ρε˙=tklvl,k+qk,k+ρh(4.2.8)

根据相关讨论(Eringen,1980,P84-84),可知速度梯度可分解为变形率张量和自旋张量,即 v k , l = d k l + ω k l v_{k,l} = d_{kl} + \omega_{kl} vk,l=dkl+ωkl,可证明 t k l v l , k = t k l d l , k t_{kl} v_{l,k} = t_{kl} d_{l,k} tklvl,k=tkldl,k,于是(4.2.8)还可写为:

ρ ε ˙ = t k l d l , k + q k , k + ρ h ( 4.2.9 ) \rho \dot{\varepsilon} = t_{kl} d_{l,k} + q_{k,k} + \rho h \qquad (4.2.9) ρε˙=tkldl,k+qk,k+ρh(4.2.9)

机械能 t k l d l , k t_{kl} d_{l,k} tkldl,k也称为应力功率。(4.2.9)表明单位时间内的内能变化是由应力功率和热量(包括 q q q h h h)产生的。这就是连续介质的局部能量平衡方程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值