CodeForces - Yet Another Segments Subset(区间DP)

在这里插入图片描述

题意:

给定n个线段 [ l i , r i ] [l_i,r_i] [li,ri]
要求选出的线段满足任意两个线段要么不相交,要么全包含。
问最多能选出多少条线段。

思路:

由部分解推出问题的解,考虑区间DP

如果对于每个线段都考虑:dp[i][j] = max{dp[i][k]+dp[k+1][j]},
显然复杂度为: O ( n 3 ) O(n^3) O(n3),TLE是必然的

线段端点值域很大,需要先离散化一下端点。

状态表示:dp[i][j] 表示区间 [i,j] 的满足条件的最大线段数,即区间 [i,j] 的最优解
状态转移

  1. 如 果 没 有 以 i 为 左 端 点 的 线 段 , 那 么 d p [ i ] [ j ] 的 状 态 可 直 接 由 m a x ( d p [ i + 1 ] [ j ] , d p [ i ] [ j − 1 ] ) 或 转 移 过 来 如果没有以i为左端点的线段,那么dp[i][j]的状态可直接由max(dp[i+1][j],dp[i][j-1])或转移过来 i线,dp[i][j]max(dp[i+1][j],dp[i][j1])
    d p [ i ] [ j ] = m a x ( d p [ i + 1 ] [ j ] , d p [ i ] [ j − 1 ] ) ; dp[i][j]=max(dp[i+1][j],dp[i][j-1]); dp[i][j]=max(dp[i+1][j],dp[i][j1]);
  2. 如 果 有 以 i 为 左 端 点 的 线 段 , 遍 历 这 些 线 段 , 设 线 段 为 [ i , k ] , k ∈ [ i , j ) 则 有 : 如果有以i为左端点的线段,遍历这些线段,设线段为[i,k],k∈[i,j)则有: i线,线,线[i,k],k[i,j)
    d p [ i ] [ j ] = m a x { d p [ i ] [ k ] + d p [ k + 1 ] [ j ] } + ( 是 否 存 在 线 段 [ i , j ] ) ; dp[i][j]=max\{dp[i][k]+dp[k+1][j]\}+(是否存在线段[i,j]); dp[i][j]=max{dp[i][k]+dp[k+1][j]}+(线[i,j]);

AC代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=3e3+10;
int t,n,b[maxn*2],dp[maxn*2][maxn*2],num;
vector<int> g[maxn*2];
struct Seg {
	int l,r;
} a[maxn];
int main() {
	scanf("%d",&t);
	while(t--) {
		scanf("%d",&n);
		num=0;
		for(int i=0; i<n; i++) {
			scanf("%d%d",&a[i].l,&a[i].r);
			b[num++]=a[i].l;
			b[num++]=a[i].r;
		}
		//离散化
		sort(b,b+num);
		num=unique(b,b+num)-b;
		for(int i=0; i<num; i++) g[i].clear();
		for(int i=0; i<n; i++) { 
			a[i].l=lower_bound(b,b+num,a[i].l)-b;
			a[i].r=lower_bound(b,b+num,a[i].r)-b;
			g[a[i].l].push_back(a[i].r);
		}
		for(int i=0;i<=num;i++){ //重置dp
			for(int j=i;j<=num;j++)
				dp[i][j]=0;
		}
		//printf("num=%d\n",num);
		for(int len=1; len<=num; len++) { //枚举区间长度len,
			//printf("======= len=%d\n",len);
			for(int i=0; i<num; i++) { //枚举左端点i,推出右端点j=i+len-1
				int j=i+len-1,f=0;
				if(j>=num) break;
				dp[i][j]=max(dp[i+1][j],dp[i][j-1]);
				for(int k:g[i]) { //枚举[i,k]进行状态转移
					if(k==j) f=1;
					if(k>=j) continue;
					dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]);
				}
				dp[i][j]+=f;
				//printf("i=%d j=%d dpij=%d\n",i,j,dp[i][j]);
			}
		}
		cout<<dp[0][num-1]<<endl;
	}
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值