大致题意:给你n个点,第i个点在的位置为(xi,yi),有两个属性值(ai,bi)。现在让你把这n个点划分为A和B两个部分,使得最后不存在i∈A和j∈B,使得xi>=xj且yi<=yj。然后对于所有的划分方法,找到并输出
比较巧妙的dp思路吧。。。。
可以看做有一条上升的阶梯将两个点集分开。
那么将点按x排序后,可以看做选一些权值上升的y值,使权值和最大。
枚举每个点做为阶梯的最后一阶的情况,
那么加入一个点,由前面y值比他小的转移来,线段树维护一下最大值,
考虑这个点对前面点的影响,对y大于这个点的加bi,否则加ai。
#include <bits/stdc++.h>
using namespace std;
#define N 100005
#define go(i,a,b) for(int i=(a);i<=(b);i++)
#define dep(i,a,b) for(int i=(a);i>=(b);i--)
#define ll long long
#define ls i*2+1
#define rs i*2+2
#define mid (l+r)/2
#define lson l,mid,ls
#define rson mid+1,r,rs
#define root 0,m,0
ll t[N*4],lz[N*4];
struct no{
int x,y,a,b;
bool operator <(const no &a)const{
return x==a.x?y>a.y:x<a.x;
}
};no d[N];
int n,c[N];
void build(int l,int r,int i){
t[i]=lz[i]=0;
if(l==r)return;
build(lson);build(rson);
}
void up(int i){
if(lz[i]){
t[ls]+=lz[i]; lz[ls]+=lz[i];
t[rs]+=lz[i]; lz[rs]+=lz[i];
lz[i]=0;
}
}
void updata(int L,int R,int v,int l,int r,int i){
if(L>R)return ;
if(L<=l&&R>=r){t[i]+=v;lz[i]+=v;return ;} up(i);
if(L<=mid)updata(L,R,v,lson);
if(R>mid)updata(L,R,v,rson);
t[i]=max(t[ls],t[rs]);
}
void inser(int pos,ll v,int l,int r,int i){
if(l==r){t[i]=max(t[i],v); return ;} up(i);
if(pos<=mid)inser(pos,v,lson);else inser(pos,v,rson);
t[i]=max(t[ls],t[rs]);
}
ll query(int L,int R,int l,int r,int i){
if(L<=l&&R>=r)return t[i]; up(i);
return max(L<=mid?query(L,R,lson):0ll,R>mid?query(L,R,rson):0ll);
}
int main()
{
while(scanf("%d",&n)!=EOF){
go(i,1,n)scanf("%d%d%d%d",&d[i].x,&d[i].y,&d[i].a,&d[i].b),c[i]=d[i].y;
sort(c+1,c+n+1);int m=unique(c+1,c+n+1)-(c+1);
go(i,1,n)d[i].y=lower_bound(c+1,c+m+1,d[i].y)-c;
sort(d+1,d+n+1); build(root);
go(i,1,n){
inser(d[i].y,query(0,d[i].y,root)+d[i].b,root);
updata(0,d[i].y-1,d[i].a,root); updata(d[i].y+1,m,d[i].b,root);
}
printf("%lld\n",t[0]);
}
return 0;
}