2019牛客1 i

大致题意:给你n个点,第i个点在的位置为(xi,yi),有两个属性值(ai,bi)。现在让你把这n个点划分为A和B两个部分,使得最后不存在i∈A和j∈B,使得xi>=xj且yi<=yj。然后对于所有的划分方法,找到并输出

                                                                 

比较巧妙的dp思路吧。。。。

可以看做有一条上升的阶梯将两个点集分开。

那么将点按x排序后,可以看做选一些权值上升的y值,使权值和最大。

枚举每个点做为阶梯的最后一阶的情况,

那么加入一个点,由前面y值比他小的转移来,线段树维护一下最大值,

考虑这个点对前面点的影响,对y大于这个点的加bi,否则加ai。

#include <bits/stdc++.h>

using namespace std;
#define N 100005
#define go(i,a,b) for(int i=(a);i<=(b);i++)
#define dep(i,a,b) for(int i=(a);i>=(b);i--)
#define ll long long
#define ls i*2+1
#define rs i*2+2
#define mid (l+r)/2
#define lson l,mid,ls
#define rson mid+1,r,rs
#define root 0,m,0
ll t[N*4],lz[N*4];
struct no{
    int x,y,a,b;
    bool operator <(const no &a)const{
        return x==a.x?y>a.y:x<a.x;
    }
};no d[N];
int n,c[N];
void build(int l,int r,int i){
    t[i]=lz[i]=0;
    if(l==r)return;
    build(lson);build(rson);
}
void up(int i){
    if(lz[i]){
        t[ls]+=lz[i]; lz[ls]+=lz[i];
        t[rs]+=lz[i]; lz[rs]+=lz[i];
        lz[i]=0;
    }
}
void updata(int L,int R,int v,int l,int r,int i){
    if(L>R)return ;
    if(L<=l&&R>=r){t[i]+=v;lz[i]+=v;return ;} up(i);
    if(L<=mid)updata(L,R,v,lson);
    if(R>mid)updata(L,R,v,rson);
    t[i]=max(t[ls],t[rs]);
}
void inser(int pos,ll v,int l,int r,int i){
    if(l==r){t[i]=max(t[i],v); return ;} up(i);
    if(pos<=mid)inser(pos,v,lson);else inser(pos,v,rson);
    t[i]=max(t[ls],t[rs]);
}
ll query(int L,int R,int l,int r,int i){
    if(L<=l&&R>=r)return t[i]; up(i);
    return max(L<=mid?query(L,R,lson):0ll,R>mid?query(L,R,rson):0ll);
}
int main()
{
    while(scanf("%d",&n)!=EOF){
        go(i,1,n)scanf("%d%d%d%d",&d[i].x,&d[i].y,&d[i].a,&d[i].b),c[i]=d[i].y;
        sort(c+1,c+n+1);int m=unique(c+1,c+n+1)-(c+1);
        go(i,1,n)d[i].y=lower_bound(c+1,c+m+1,d[i].y)-c;
        sort(d+1,d+n+1); build(root);
        go(i,1,n){
            inser(d[i].y,query(0,d[i].y,root)+d[i].b,root);
            updata(0,d[i].y-1,d[i].a,root); updata(d[i].y+1,m,d[i].b,root);
        }
        printf("%lld\n",t[0]);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值