我们常说的坐标都是横平竖直的两条垂直的线,构成平面直角坐标系,这便是欧式几何的坐标系。但是日常生活中人看到的满是相交的线,而非垂直的线,比如两条铁轨,看向无限远处,是两条相交的线,但是在欧式几何中,这两条铁轨还是垂直的,这便是欧式几何的局限性。除了相交的线外,还有一些圆形的,波浪形的物体。比如一只小虫子,绕着瓶盖在转圈,这时小虫子的坐标系甚至是一个圆形会更为简单,为了解决特殊形状的坐标系,演化出双曲几何学,用于表示坐标轴是曲线的情况。回到相交线的情况,那么由相交线组成的坐标系,由于不是垂直的,斜的就要加一个斜率,把斜率设为1/w(无所谓斜率是什么,方便计算先这么设置,可以理解为XY轴的中心不变,给XY轴都加上斜率)。那么此时斜着的坐标系坐标是(x/w, y/w),就用数学表示出来了。但是图形上,这个交叉的坐标系不是直角,也不能按照正常的坐标系计算,怎么把交叉坐标系捋直呢。想一下三角尺子,垂直的看是一个直角,直角边远离视角时,看上去是个锐角,直角边靠近视角时,看上去是个钝角,所以如果把交叉坐标系放到三维空间中,它总能通过某种变换,变成直角。变成直角后就可以正常数学计算了。此时即把坐标系升维生三维的=> (x/w, y/w, 1) 。w还是个任意的斜率,故x/w也是个任意的值,可以写成(x,y,w)即我们常说的齐次坐标。
齐次坐标到底是什么东西 一篇文章告诉你 用筷子教你学会齐次坐标
最新推荐文章于 2025-03-24 17:08:01 发布