deeplearning
文章平均质量分 97
喵喵扫描仪
这个作者很懒,什么都没留下…
展开
-
Mac Apple Silicon M1/M2 homebrew miniforge conda pytorch yolov5深度学习环境搭建并简单测试MPS GPU加速
笔者使用的是一台M2版本的Macbook Air,虽然苹果作为深度学习的训练机不太合适,但是由于macbook作为打字机实在是无可挑剔,所以使用macbook调试一下pytorch的代码再放到集群上训练或者直接在mac上调试运行代码都是不错的体验,本文以在mac上直接调试yolov5为目标,大概记录一下步骤。这一步就是大家八仙过海各显神通的时候了,总之开启代理后,除了浏览器可以走代理访问之外,还需要配置zsh和git走代理,否则homebrew的安装会比较痛苦。就可以开始使用专属的conda虚拟环境了。原创 2023-02-27 19:38:43 · 8342 阅读 · 10 评论 -
目标检测Object Detection下的P-R曲线,AP,mAP,AUC,ROC曲线详解
目录P-R曲线APmAPP-R曲线上篇文章我们详细说了一下Detection中的Recall和Precision的计算,P-R曲线就是Precision和Recall画出的曲线。APmAP原创 2020-12-22 11:11:21 · 8447 阅读 · 8 评论 -
目标检测Object Detection下的Precision & Recall和分类问题中的有何不同?
目录一,目标检测中的Precision & Recall一,目标检测中的Precision & RecallPrecision,准确率/查准率 Recall,召回率/查全率Precision=TPTP+FPPrecision= \frac{TP}{TP+FP}Precision=TP+FPTP准确率比较好理解,就是检测出的所有正样本中多少是真正的正样本Recall=TPTP+FNRecall= \frac{TP}{TP+FN}Recall=TP+FNTPReca原创 2020-12-22 10:48:48 · 975 阅读 · 0 评论 -
深度神经网络DNN的反向传播原理及推导
DNN反向传播推理CNN反向传播推理对于对于任意(Borel measurable function)波莱尔可测函数(包括⼀切阶梯函数、⼀切连续函数和分段连续函数)和任意给定精度,都可以使⽤多层感知机(MLP)来近似。【1989】Multilayer feedforward networks are universal approximators,该⽂章中证明了任意宽的单隐层MLP的万能近似性质。【2017】Universal Function Approximation by Deep Neur原创 2020-12-29 17:19:47 · 643 阅读 · 1 评论 -
《Kaggle Histopathologic Cancer Detection》模型训练的一些记录
乳腺癌Kaggle比赛的这个项目进行了一些实验,项目地址:https://www.kaggle.com/c/histopathologic-cancer-detection/overview使用GTX 1080TI大概训练了100个小时的模型,训练集大概22万张图片,有些相同设定跑过多遍,记录一下测试结果:...原创 2020-10-20 11:43:10 · 267 阅读 · 0 评论 -
《使用深度神经网络进行图像分类1 - 基础知识树》
我的学习习惯是从抽象到具体,从系统到节点,目前的打算是写20篇左右的博客,把图像分类到物体识别讲清楚,所以先把使用DNN/CNN进行图像分类的总体知识体系进行梳理,画在树上。先搞一个精简版的知识树,帮助自己从最基础的内容开始渐进式巩固和推进内化。制作本图的过程中参考了部分书籍和资料,如下:《深度学习之图像识别 核心技术与案例实战》–言有三《图像处理中的数学修炼》–左飞《机器学习 使用OpenCV和Python进行智能图像处理》 --Michael Beyelerhttps://neuralne原创 2020-10-20 11:27:31 · 280 阅读 · 0 评论 -
《Kaggle Histopathologic Cancer Detection比赛》之Tensorflow2.0/Keras Eager Execution实现
Kaggle项目地址:https://www.kaggle.com/c/histopathologic-cancer-detection/overview本文记录了一个使用Tensorflow2.0/Keras Eager Execution的实现,数据预处理采用了Tensorflow标准的Dataset的方式:# -*- coding: utf-8 -*-import tensorflow as tfAUTOTUNE = tf.data.experimental.AUTOTUNE # tf.原创 2020-10-20 11:22:26 · 183 阅读 · 0 评论 -
《Kaggle Histopathologic Cancer Detection癌症图像分类比赛》之Keras/Generator实现
项目地址:https://www.kaggle.com/c/histopathologic-cancer-detection/overview本文记录了自己使用纯Keras以及Keras标准的Generator的数据准备方式:其他实现方式见:Kaggle Histopathology Cancel Detection之Pyorch实现Kaggle Histopathologic Cancer Detection之Keras实现Kaggle Histopathologic Cancer Detect原创 2020-10-20 11:18:34 · 392 阅读 · 0 评论 -
《Kaggle Histopathologic Cancer Detection癌症图像分类比赛》之PyTorch实现
项目地址:https://www.kaggle.com/c/histopathologic-cancer-detection/overview本文记录了自己使用Pytorch以及Pytorch标准的Dataset的准备方式对同一问题进行了实现:其他实现版本:Kaggle Histopathology Cancel Detection之Pyorch实现Kaggle Histopathologic Cancer Detection之Keras/Generator实现Kaggle Histopathol原创 2020-10-20 11:16:09 · 819 阅读 · 0 评论