RabbitMQ高级特性总结

消息的可靠投递

在使用 RabbitMQ 的时候,作为消息发送方希望杜绝任何消息丢失或者投递失败场景。RabbitMQ 为我们提供了两种方式用来控制消息的投递可靠性模式。

  • confirm 确认模式
  • return 退回模式

rabbitmq整个消息投递的路径为:
producer—>rabbitmq broker—>exchange—>queue—>consumer

  • 消息从producer到exchange则会返回一个confirmCallback
  • 消息从exchange—>queue投递失败则会返回一个returnCallback

我们可以利用这两个callback控制消息的可靠性投递

确认模式

消息从 producer 到 exchange 则会返回一个 confirmCallback
以spring整合rabbitmq为例,修改rabbitmq配置文件,在connectionFactory中添加publisher-confirms属性并设置值为true

<!--
* 确认模式:
* 步骤:
* 1. 确认模式开启:ConnectionFactory中开启publisher-confirms="true"
-->
<!-- 定义rabbitmq connectionFactory -->
    <rabbit:connection-factory id="connectionFactory" host="${rabbitmq.host}"
                               port="${rabbitmq.port}"
                               username="${rabbitmq.username}"
                               password="${rabbitmq.password}"
                               virtual-host="${rabbitmq.virtual-host}"
                               publisher-confirms="true"/>
/*
 * 确认模式:
 * 步骤:
 * 2. 在rabbitTemplate定义ConfirmCallBack回调函数
 */
@Test
    public void queueTest(){

        rabbitTemplate.setConfirmCallback(new RabbitTemplate.ConfirmCallback() {
            @Override
            public void confirm(CorrelationData correlationData, boolean ack, String cause) {
            /**
             *
             * @param correlationData 相关配置信息
             * @param ack exchange交换机 是否成功收到了消息。true 成功,false代表失败
             * @param cause 失败原因
             */
                System.out.println("confirm方法被执行了....");
                if (ack) {
                    //接收成功
                    System.out.println("接收成功消息" + cause);
                } else {
                    //接收失败
                    System.out.println("接收失败消息" + cause);
                    //做一些处理,让消息再次发送。
                }

            }
        });
        //路由键与队列同名
        rabbitTemplate.convertAndSend("spring_queue", "message confirm....");
    }

在这里插入图片描述
因为正常向队列中发送了消息,所以返回的cause值为空,如果出现异常,cause为异常原因

退回模式

消息从 exchange–>queue 投递失败则会返回一个 returnCallback
1.开启回退模式:publisher-returns=“true”

    <!-- 定义rabbitmq connectionFactory -->
    <rabbit:connection-factory id="connectionFactory" host="${rabbitmq.host}"
                               port="${rabbitmq.port}"
                               username="${rabbitmq.username}"
                               password="${rabbitmq.password}"
                               virtual-host="${rabbitmq.virtual-host}"
                               publisher-returns="true"/>

2.设置Exchange处理消息失败的模式:setMandatory,然后设置ReturnCallBack

    @Test
    public void queueTest(){
        //1.设置交换机处理失败消息的模式
        rabbitTemplate.setMandatory(true);
        //2.设置ReturnCallBack
        rabbitTemplate.setReturnCallback(new RabbitTemplate.ReturnCallback() {
            /**
             * @param message    消息对象
             * @param replyCode  错误码
             * @param replyText  错误信息
             * @param exchange   交换机
             * @param routingKey 路由键
             */
            @Override
            public void returnedMessage(Message message, int replyCode, String
                    replyText, String exchange, String routingKey) {
                System.out.println("return 执行了....");
                System.out.println(message);
                System.out.println(replyCode);
                System.out.println(replyText);
                System.out.println(exchange);
                System.out.println(routingKey);
                //处理
            }
        });

        //手动添加错误路由模拟错误发生
        rabbitTemplate.convertAndSend("spring_topic_exchange", "return123", "return message...");
    }

此处只有发生错误才会返回消息,因此手动加上一个错误,给发送消息添加路由值return123,实际上并没有这个路由,运行返回消息如下。
在这里插入图片描述

Consumer Ack

ack指Acknowledge,确认。 表示消费端收到消息后的确认方式。
有三种确认方式:

  • 自动确认:acknowledge=“none”
  • 手动确认:acknowledge=“manual”
  • 根据异常情况确认:acknowledge=“auto”,(这种方式使用麻烦,没有进行学习)

其中自动确认是指,当消息一旦被Consumer接收到,则自动确认收到,并将相应 message 从RabbitMQ 的消息缓存中移除。但是在实际业务处理中,很可能消息接收到,业务处理出现异常,那么该消息就会丢失。如果设置了手动确认方式,则需要在业务处理成功后,调用channel.basicAck(),手动签收,如果出现异常,则调用channel.basicNack()方法,让其自动重新发送消息。

还是以spring整合rabbitmq为例,rabbitmq配置文件中设置确认方式

<rabbit:listener-container connection-factory="connectionFactory"
acknowledge="manual">
.....

监听类代码如下:

public class AckListener implements ChannelAwareMessageListener {
    @Override
    public void onMessage(Message message, Channel channel) throws Exception {
        long deliveryTag = message.getMessageProperties().getDeliveryTag();
        try {
            //1.接收转换消息
            System.out.println(new String(message.getBody()));
            //2. 处理业务逻辑
            System.out.println("处理业务逻辑...");
            int i = 3/0;//出现错误
            // 3. 手动签收
            channel.basicAck(deliveryTag,true);
        } catch (Exception e) {
            //e.printStackTrace();
            //4.拒绝签收
            /*
             *第三个参数:requeue:重回队列。如果设置为true,则消息重新回到queue,broker会
             *重新发送该消息给消费端
             */
            channel.basicNack(deliveryTag,true,true);
            //channel.basicReject(deliveryTag,true);
        }
    }
}

因为出现异常调用channel.basicNack()方法,让其自动重新发送消息,所以无限循环输出内容
在这里插入图片描述

消费端限流

在这里插入图片描述
当我们的 Rabbitmq 服务器积压了有上万条未处理的消息时,我们随便打开一个消费者客户端,会出现这样情况: 巨量的消息瞬间全部推送过来,但是我们单个客户端无法同时处理这么多数据!当数据量特别大的时候,我们对生产端限流肯定是不科学的,因为有时候并发量就是特别大,有时候并发量又特别少,我们无法约束生产端,这是用户的行为。所以我们应该对消费端限流,rabbitmq提供了一种qos(服务质量保证)功能,即在非自动确认消息的前提下,如果一定数目的消息(给channel或者consume设置Qos值)未被确认前,不进行消费新消息。

1.确保ack机制为手动确认
2.listener-container配置属性perfetch = 1,表示消费端每次从mq拉去一条消息来消费,直到手动确认消费完毕后,才会继续拉去下一条消息。

<rabbit:listener-container connection-factory="connectionFactory" auto-declare="true" acknowledge="manual" prefetch="1">
        <rabbit:listener ref="topicListenerACK" queue-names="spring_topic_queue_well2"/>
</rabbit:listener-container>

生产者,发送五条消息

    @Test
    public void topicTest(){
/**
 * 参数1:交换机名称
 * 参数2:路由键名
 * 参数3:发送的消息内容
 */
        for (int i=0;i<5;i++){
            rabbitTemplate.convertAndSend("spring_topic_exchange", "xzk.a", "发送到spring_topic_exchange交换机xzk.cn的消息"+i);
        }
    }
}

生产者注释掉channel.basicAck(deliveryTag,true)即不确认收到消息

public class AckListener implements ChannelAwareMessageListener {
    @Override
    public void onMessage(Message message, Channel channel) throws Exception {
        long deliveryTag = message.getMessageProperties().getDeliveryTag();
        try {
            //1.接收转换消息
            System.out.println(new String(message.getBody()));
            //2. 处理业务逻辑
            System.out.println("处理业务逻辑...");
            // 3. 手动签收
            //channel.basicAck(deliveryTag,true);
        } catch (Exception e) {
            //e.printStackTrace();
            //4.拒绝签收
            /*
             *第三个参数:requeue:重回队列。如果设置为true,则消息重新回到queue,broker会
             *重新发送该消息给消费端
             */
            channel.basicNack(deliveryTag,true,true);
        }
    }
}

此时启动消费者再运行生产者之后,发现消费者发送了五条消息,实际上生产者只接受到了一条消息,达到限流作用
在这里插入图片描述
观察rabbitmq控制台,发现有1条unack消息。4条ready消息,还没到达consumer。和我们设置的prefetchCount=1限流情况相符。
在这里插入图片描述
把channel.basicAck(deliveryTag,true)的注释取消掉,即可以自动确认收到消息,重新运行消费者,接收到了另外的四条消息
在这里插入图片描述
在这里插入图片描述

TTL(Time To Live)

Time To Live,消息过期时间设置

设置某个队列为过期队列

设置交换机,队列以及队列过期时间为10000ms

 <!--ttl-->
    <rabbit:queue name="test_queue_ttl" id="test_queue_ttl">
        <rabbit:queue-arguments>
            <entry key="x-message-ttl" value="10000" value-type="java.lang.Integer"/>
        </rabbit:queue-arguments>
    </rabbit:queue>

    <rabbit:topic-exchange name="test_exchange_ttl">
        <rabbit:bindings>
            <rabbit:binding pattern="ttl.#" queue="test_queue_ttl"/>
        </rabbit:bindings>
    </rabbit:topic-exchange>

生产者发送10条消息

    @Test
    public void testTtl() {
        for (int i = 0; i < 10; i++) {
            rabbitTemplate.convertAndSend("test_exchange_ttl","ttl.hehe","message ttl...");
        }

在这里插入图片描述
十秒钟后,过期消息消失在这里插入图片描述

设置单独某个消息过期

设置交换机和队列

<rabbit:queue name="test_queue_ttl" id="test_queue_ttl"/>

<rabbit:topic-exchange name="test_exchange_ttl">
    <rabbit:bindings>
        <rabbit:binding pattern="ttl.#" queue="test_queue_ttl"/>     
    </rabbit:bindings>
</rabbit:topic-exchange>

生产者发送特定过期消息,用到了MessagePostProcessor这个api

 @Test
    public void testTtl() {
        MessagePostProcessor messagePostProcessor = new MessagePostProcessor() {
            @Override
            public Message postProcessMessage(Message message) throws AmqpException {
                //1.设置message信息
                message.getMessageProperties().setExpiration("5000");//消息的过期时间
                //2.返回该消息
                return message;
            }
        };
        //消息单独过期
        rabbitTemplate.convertAndSend("test_exchange_ttl","ttl.hehe","message ttl...",messagePostProcessor);
    }

在这里插入图片描述
5s之后
在这里插入图片描述

注:
1.如果同时设置队列过期和消息过期,系统会根据哪个过期的时间短而选用哪儿个。
2.设置单独消息过期时,如果该消息不为第一个接受的消息,则不过期。

死信队列

死信队列,英文缩写:DLX 。Dead Letter Exchange(死信交换机),当消息成为Deadmessage后,可以被重新发送到另一个交换机,这个交换机就是DLX。
在这里插入图片描述
消息成为死信的三种情况:

  • 队列消息长度到达限制;
  • 消费者拒接消费消息,basicNack/basicReject,并且不把消息重新放入原目标队列,requeue=false;
  • 原队列存在消息过期设置,消息到达超时时间未被消费;

队列绑定死信交换机:
给队列设置参数: x-dead-letter-exchange 和 x-dead-letter-routing-key
在这里插入图片描述
实现
1.声明正常的队列(test_queue_dlx)和交换机(test_exchange_dlx)

<rabbit:queue name="test_queue_dlx" id="test_queue_dlx">
    <!--正常队列绑定死信交换机-->
    <rabbit:queue-arguments>
        <!--x-dead-letter-exchange:死信交换机名称-->
        <entry key="x-dead-letter-exchange" value="exchange_dlx" />
        <!--3.2 x-dead-letter-routing-key:发送给死信交换机的routingkey-->
        <entry key="x-dead-letter-routing-key" value="dlx.hehe" />
        <!--4.1 设置队列的过期时间 ttl-->
        <entry key="x-message-ttl" value="10000" value-type="java.lang.Integer"/>
        <!--4.2 设置队列的长度限制 max-length -->
        <entry key="x-max-length" value="10" value-type="java.lang.Integer" />
    </rabbit:queue-arguments>
</rabbit:queue>

<rabbit:topic-exchange name="test_exchange_dlx">
    <rabbit:bindings>
        <rabbit:binding pattern="test.dlx.#" queue="test_queue_dlx">
        </rabbit:binding>
    </rabbit:bindings>
</rabbit:topic-exchange>

2.声明死信队列(queue_dlx)和死信交换机(exchange_dlx)

<rabbit:queue name="queue_dlx" id="queue_dlx"></rabbit:queue>

<rabbit:topic-exchange name="exchange_dlx">
    <rabbit:bindings>
        <rabbit:binding pattern="dlx.#" queue="queue_dlx"></rabbit:binding>
    </rabbit:bindings>
</rabbit:topic-exchange>

3.生产端测试

/**
* 发送测试死信消息:
* 1. 过期时间
* 2. 长度限制
* 3. 消息拒收
*/
@Test
public void testDlx(){
    //1. 测试过期时间,死信消息
    rabbitTemplate.convertAndSend("test_exchange_dlx","test.dlx.haha","我是一条消息,我会死吗?");
    //2. 测试长度限制后,消息死信
    /* for (int i = 0; i < 20; i++) {
    rabbitTemplate.convertAndSend("test_exchange_dlx","test.dlx.haha","我是一条消息,我会死吗?");
    }*/
    //3. 测试消息拒收
    //rabbitTemplate.convertAndSend("test_exchange_dlx","test.dlx.haha","我是一条消息,我会死吗?");
}

4.消费端监听

public class DlxListener implements ChannelAwareMessageListener {

    @Override
    public void onMessage(Message message, Channel channel) throws Exception {
        long deliveryTag = message.getMessageProperties().getDeliveryTag();
        try {
            //1.接收转换消息
            System.out.println(new String(message.getBody()));
            //2. 处理业务逻辑
            System.out.println("处理业务逻辑...");
            int i = 3/0;//出现错误
            //3. 手动签收
            channel.basicAck(deliveryTag,true);
        } catch (Exception e) {
            //e.printStackTrace();
            System.out.println("出现异常,拒绝接受");
            //4.拒绝签收,不重回队列 requeue=false
            channel.basicNack(deliveryTag,true,false);
        }
    }
}
<rabbit:listener ref="dlxListener" queue-names="test_queue_dlx">
</rabbit:listener>

延迟队列

延迟队列,即消息进入队列后不会立即被消费,只有到达指定时间后,才会被消费。c
需求:

  • 1.下单后,30分钟未支付,取消订单,回滚库存。
  • 2.新用户注册成功7天后,发送短信问候。

实现方式:

  • 定时器
  • 延迟队列

定时器的实现方式不够优雅,我们采取延迟队列的方式
在这里插入图片描述
不过很可惜,在RabbitMQ中并未提供延迟队列功能。
但是可以使用:TTL+死信队列 组合实现延迟队列的效果。

在这里插入图片描述
配置

<!--
延迟队列:
        1. 定义正常交换机(order_exchange)和队列(order_queue)
        2. 定义死信交换机(order_exchange_dlx)和队列(order_queue_dlx)
        3. 绑定,设置正常队列过期时间为30分钟
-->
<!-- 定义正常交换机(order_exchange)和队列(order_queue)-->
<rabbit:queue id="order_queue" name="order_queue">
<!-- 绑定,设置正常队列过期时间为30分钟-->
    <rabbit:queue-arguments>
        <entry key="x-dead-letter-exchange" value="order_exchange_dlx" />
        <entry key="x-dead-letter-routing-key" value="dlx.order.cancel" />
        <entry key="x-message-ttl" value="10000" value-type="java.lang.Integer"/>
    </rabbit:queue-arguments>
</rabbit:queue>

<rabbit:topic-exchange name="order_exchange">
    <rabbit:bindings>
        <rabbit:binding pattern="order.#" queue="order_queue"></rabbit:binding>
    </rabbit:bindings>
</rabbit:topic-exchange>


<!-- 定义死信交换机(order_exchange_dlx)和队列(order_queue_dlx)-->
<rabbit:queue id="order_queue_dlx" name="order_queue_dlx"></rabbit:queue>

<rabbit:topic-exchange name="order_exchange_dlx">
    <rabbit:bindings>
        <rabbit:binding pattern="dlx.order.#" queue="order_queue_dlx"></rabbit:binding>
    </rabbit:bindings>
</rabbit:topic-exchange>

生产端测试

@Test
public void testDelay() throws InterruptedException {
    //1.发送订单消息。 将来是在订单系统中,下单成功后,发送消息
    rabbitTemplate.convertAndSend("order_exchange","order.msg","订单信息:id=1,time=2019年8月17日16:41:47");
    /*//2.打印倒计时10秒
    for (int i = 10; i > 0 ; i--) {
        System.out.println(i+"...");
        Thread.sleep(1000);
    }*/
}

消费端监听

public class OrderListener implements ChannelAwareMessageListener {
    @Override
    public void onMessage(Message message, Channel channel) throws Exception {
		long deliveryTag = message.getMessageProperties().getDeliveryTag();
		try {
			//1.接收转换消息
			System.out.println(new String(message.getBody()));
			//2. 处理业务逻辑
			System.out.println("处理业务逻辑...");
			System.out.println("根据订单id查询其状态...");
			System.out.println("判断状态是否为支付成功");
			System.out.println("取消订单,回滚库存....");
			//3. 手动签收
			channel.basicAck(deliveryTag,true);
		} catch (Exception e) {
			//e.printStackTrace();
			System.out.println("出现异常,拒绝接受");
			//4.拒绝签收,不重回队列 requeue=false
			channel.basicNack(deliveryTag,true,false);
		}
	}
}

<rabbit:listener ref="orderListener" queue-names="order_queue_dlx">
</rabbit:listener>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值