简介:Python处理图片的第三方库都有哪些?出现时间,使用场景,主要方法
Python处理图片的第三方库都有哪些?- Python学习导航
Python作为一门功能强大的编程语言,拥有丰富的第三方库支持,特别是在图像处理领域。以下是一些常用的Python图像处理第三方库,包括它们的作者、出现时间、使用场景以及主要方法。
PIL(Python Imaging Library)
- 作者与出现时间:PIL最初由Fredrik Lundh开发,首次发布于1995年。它是Python中最早的图像处理库之一。
- 使用场景:PIL提供了基本的图像处理功能,包括图像读取、显示、保存、滤波、图像分割、边缘检测等。它适用于需要进行基本图像操作的场景。
- 主要方法:
open()
,save()
,filter()
,crop()
,resize()
等。
Pillow
- 作者与出现时间:Pillow是由Alex Clark和Contributors开发的,作为PIL的一个友好分支(Fork),首次发布于2010年。它旨在使PIL库能够在Python 3.x上使用。
- 使用场景:Pillow提供了丰富的图形和图像绘制功能,可以用于创建各种类型的图像和图形。它是Python图像处理领域的常用库,适用于需要进行图像文件操作和简单图像处理的场景。
- 主要方法:与PIL类似,包括
open()
,save()
,filter()
,crop()
,resize()
等。 - 官网地址:Pillow官方文档
OpenCV
- 作者与出现时间:OpenCV由Intel开发,首次发布于2000年。它是一个跨平台的计算机视觉库。
- 使用场景:OpenCV提供了丰富的图像处理和计算机视觉功能,包括图像读取、显示、保存、滤波、特征提取、目标检测等。它广泛应用于人脸识别、车牌识别等领域。
- 主要方法:
imread()
,imshow()
,imwrite()
,filter2D()
,detectMultiScale()
等。
Matplotlib
- 作者与出现时间:Matplotlib由John D. Hunter开发,首次发布于2003年。它主要用于绘制图形和表格。
- 使用场景:虽然Matplotlib主要用于数据可视化,但它也提供了一些图像处理功能,如图像显示和基本的图像操作。它适用于需要在数据分析和科学计算中展示图像的场景。
- 主要方法:
imshow()
,figure()
,plot()
,show()
等。
Scikit-image
- 作者与出现时间:Scikit-image是由Scikit-image团队开发的,基于SciPy的一个图像处理库。它首次发布于2010年。
- 使用场景:Scikit-image提供了丰富的图像处理功能,包括图像读取、显示、保存、滤波、边缘检测、特征提取等。它广泛应用于医学图像处理、遥感图像处理等领域。
- 主要方法:
io.imread()
,io.imshow()
,transform.resize()
,filters.sobel()
等。
总结
以上列举的只是Python图像处理领域中常用的几个第三方库,还有很多其他优秀的库可供选择。选择哪个库取决于您的具体需求和使用场景。建议您根据实际情况进行选择,并查阅相关库的官方文档和教程,以学习如何使用它们。
以下是一些其他常用的Python图像处理库:
- Wand
- imgaug
- pyvips
- napari
- SimpleITK
- pydicom
- tifffile
- OpenSlide
- pytesseract
注:当前文章会不定期进行更新。如果您对本文有更好的建议,有新资料推荐, 可以点击: 欢迎分享优秀网站 。