一.算法效率
1.1如何评价一个算法的效率,以下是求斐波那契数列的代码。
long long Fib(int N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}
此代码运用递归,看起来的确很简洁,但是代码长度的长短可以衡量代码的效率吗?什么样的代码是高效率的呢?
1.2算法的复杂度
算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。
二.时间复杂度
2.1时间复杂度的定义
在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。可是每次都上机测试会很麻烦,所以有了时间复杂度,一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
简单来说 :找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。
2.2 大O的渐进表示法
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。
大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。
除了以上,另外的其他算法有时要考虑最好的情况,平均情况,最坏的情况。
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)
2.3常见的时间复杂度的简单例子
1.text1
void fun(int n)
{
int count = 0;
for(int k = 0;k<2*n;k++)
{
count++;
}
int m = 10;
whlie(m--)
{
count++;
}
printf("%d",count);
}
示例1代码中基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为O(N).
2.text2
void fun(int M,int N)
{
int count = 0;
for(int k = 0;k<M;k++)
{
count++;
}
for(int k = 0;k<N;k++)
{
count++;
}
printf("%d",count);
}
示例2代码中基本操作执行了M+N次,由于有两个未知数,所以时间复杂度为O(M+N).
3.text3
void fun()
{
int count = 0;
for(int k = 0;k<10;k++)
{
count++;
}
printf("%d",count);
}
示例3代码中基本操作执行了10次,通过推导大O阶方法知道,时间复杂度为O(1).
4.text4
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i - 1] > a[i])
{
Swap(&a[i - 1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
示例4中是一个经典的冒泡排序,最好的情况是数组初始就是升序排列的,此时只需要执行N次,
最坏的情况是数组初始是降序排列的,此时需要执行N*N次。
5.text5
const char * strchr ( const char * str, int character );
{
while(*str)
{
if(*str==character())
{
return str;
}
else
{
str++;
}
}
}
示例5中最好的情况只会执行1次,最坏的情况会执行N次,所以他的时间复杂度为O(N)。
6.text6
int BinarySearch(int* a, int n, int x)
{
assert(a);
int begin = 0;
int end = n-1;
while (begin <= end)
{
int mid = begin + ((end-begin)>>1);
if (a[mid] < x)
begin = mid+1;
else if (a[mid] > x)
end = mid-1;
else
return mid;
}
return -1;
}
示例6是经典的二分查找,那二分查找什么时候情况最坏呢?查找区间只剩下一个数或者找不到,N/2/2.../2,二分查找查找几次就除以几次2,假设查找了X次,那么2的x次方等于N ,所以时间复杂度为 O(logN),logN在算法分析中表示是底数为2,对数为N。
7.text7
long long Fac(size_t N)
{
if(0 == N)
return 1;
return Fac(N-1)*N;
}
示例7 的时间复杂度为O(N)
8.text8
long long Fac(size_t N)
{
if(N<3)
return 1;
return Fac(N-1)+Fac(N-2);
}
对于示例8中的计算斐波那契数列的时间复杂度为O(2^N)
三.空间复杂度
空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。
注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。
1text
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i - 1] > a[i])
{
Swap(&a[i - 1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
示例1使用了常数个额外空间,所以空间复杂度为 O(1)
2text
long long Fac(size_t N)
{
if(0 == N)
return 1;
return Fac(N-1)*N;
}
示例2递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)