自动化IVUS图像分割:探索可变形模板模型与特征跟踪
1. 引言
血管内超声(IVUS)技术自20世纪80年代末引入以来,已经成为诊断冠状动脉心脏病(CHD)的一种有力工具。IVUS通过形成冠状动脉的三维表示,不仅帮助医生更好地理解病变情况,还为预防性预测CHD提供了可能。然而,IVUS图像的分割一直是自动化过程中的一大挑战。本文将探讨如何使用带特征跟踪的可变形模板模型来实现IVUS图像的自动化分割,重点在于如何最小化导丝位置变化对分割结果的影响。
2. IVUS图像分割的重要性
血管内超声(IVUS)是一种通过导管插入血管内部,利用高频声波生成血管壁图像的技术。IVUS图像的分割是将图像中的不同结构(如腔体、内膜、中膜和外膜)分离出来的过程。这个过程对于评估血管壁的状态、检测斑块以及制定治疗方案至关重要。然而,IVUS图像中不可避免地存在各种伪影,尤其是导丝和导管产生的伪影,这些伪影会对分割结果产生负面影响。
2.1 伪影的影响
在IVUS图像中,最常见的伪影是由导丝和导管引起的。导丝在图像中会产生一个强烈的回声区,随后是一个长而窄的阴影区。这些伪影不仅会干扰图像的质量,还会误导分割算法,导致分割结果不准确。因此,如何有效地检测和补偿这些伪影是IVUS图像分割的关键问题。
2.2 人工分割的局限性
尽管人工分割可以提供较高的精度,但它非常耗时且容易疲劳。自动化分割算法的目标是实现与人工分割相媲美的精度,同时大大提高效率。然而,现有的自动化算法在处理复杂图像特征时仍然面临挑战,尤其是在处理伪影时。
3. 活动轮廓模型(ACM)
活动轮廓模型(Ac
订阅专栏 解锁全文
68

被折叠的 条评论
为什么被折叠?



