The Day You Went Away

博客内容是一段关于爱情的感慨,表达了失去爱人后的孤独与痛苦,回忆起与爱人分别的日期和场景,意识到失去后才懂得珍惜,抒发了对爱人深深的思念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

well i wonder could it be
when i was dreaming about you baby you were dreaming of me
call me crazy
call me blind
to still be suffering is stupid after all of this time

did i lose my love to someone better
and does she love youlike i do
i do, know i really really do

well hey
so much i need to say
been lonely since theday
color=#000000>the day went < FONT>

so sad but true
for me there's only you
been crying since theday
theday you went away

i remember date and time
september twenty second
sunday twenty five after nine
in the doorway with your case
no longer shouting at each other
there were tears on our faces

and we were letting go of something special
something we'll never have again
i know, i guess i really really know

why do we never know what we've got till it's gone
how could i carry on
cause i've been missing youso much i have to say

内容概要:本文档《gee scripts.txt》记录了利用Google Earth Engine(GEE)进行遥感影像处理与分类的脚本流程。首先,对指定区域内的Landsat 5卫星图像进行了数据筛选,排除云量超过7%的影像,并应用缩放因子调整光学波段和热波段的数值。接着,基于样本数据集训练随机森林分类器,用于区分植被、水体、建筑、土壤、拜耳作物、岩石和草地等地物类型。最后,将训练好的模型应用于处理后的Landsat 5影像,生成分类结果图层,并计算混淆矩阵以评估模型准确性,同时将分类结果导出至Google Drive。 适合人群:从事地理信息系统(GIS)、遥感科学或环境监测领域的研究人员和技术人员,特别是那些希望深入了解GEE平台及其在地物分类中的应用的人士。 使用场景及目标:①从Landsat卫星获取特定时间段内的高质量影像数据;②通过预处理步骤提高影像质量,确保后续分析的有效性;③构建并训练机器学习模型以实现地物自动分类;④评估分类模型性能,保证结果可靠性;⑤将最终成果高效存储于云端平台以便进一步研究或共享。 阅读建议:由于涉及较多专业术语和技术细节,在阅读时建议先熟悉GEE平台的基本操作以及相关遥感知识,重点关注数据处理流程和分类算法的选择依据。此外,对于代码部分,可以尝试在自己的GEE环境中运行,以便更好地理解每个步骤的具体作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值