《菜菜的机器学习sklearn课堂》数据预处理和特征工程,循序渐进

例如梯度和矩阵为核心的算法中,逻辑回归、支持向量机、神经网络,无量纲化可以加快求解速度;而在距离类模型,例如K近邻、K-Means聚类,无量纲化可以帮我们提升模型精度,避免某一个取值范围特别大的特征对距离计算造成影响。

决策树和树的集成算法是特例,对决策树我们不需要无量纲化,决策树可以把任意数据都处理得很好

数据的无量纲化可以是线性的,也可以是非线性的。

线性的无量纲化包括:

  • 中心化处理(Zero-centered或者Mean-subtraction)

中心化的本质是让所有记录减去一个固定值,即让数据样本数据平移到某个位置

  • 缩放处理(Scale)

缩放的本质是通过除以一个固定值,将数据固定在某个范围之中(取对数也算是一种缩放处理)

数据归一化 preprocessing.MinMaxScaler

数据归一化(Normalization,又称Min-Max Scaling):当数据(x)按照最小值中心化后,再按极差(最大值 - 最小值)缩放,数据移动了最小值个单位,并且会被收敛到 [0,1] 之间。

归一化之后的数据服从正态分布,公式如下:

x ∗ = x − m i n ( x ) m a x ( x ) − m i n ( x ) x^* = \frac {x-min(x)} {max(x) - min(x)} x∗=max(x)−min(x)x−min(x)​

注意区分 归一化正则化

Normalization是归一化,不是正则化;正则化(Regularization) 不是数据预处理的一种手段

在sklearn当中,我们使用preprocessing.MinMaxScaler来实现数据归一化功能。

  • 它有一个重要参数feature_range,控制我们希望把数据压缩到的范围,默认是[0,1]

from sklearn.preprocessing import MinMaxScaler

data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]

#不太熟悉numpy的小伙伴,能够判断data的结构吗?

#如果换成表是什么样子?

import pandas as pd

pd.DataFrame(data)

在这里插入图片描述

#实现归一化

scaler = MinMaxScaler() #实例化

scaler = scaler.fit(data) #fit,在这里本质是生成min(x)和max(x)

result = scaler.transform(data) #通过接口导出结果

result

“”"

array([[0. , 0. ],

[0.25, 0.25],

[0.5 , 0.5 ],

[1. , 1. ]])

“”"

result_ = scaler.fit_transform(data) #训练和导出结果一步达成

result_

“”"

array([[0. , 0. ],

[0.25, 0.25],

[0.5 , 0.5 ],

[1. , 1. ]])

“”"

scaler.inverse_transform(result) #将归一化后的结果逆转

“”"

array([[ 5. , 5. ],

[ 6.25, 6.25],

[ 7.5 , 7.5 ],

[10. , 10. ]])

“”"

#使用MinMaxScaler的参数feature_range实现将数据归一化到[0,1]以外的范围中

data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]

scaler = MinMaxScaler(feature_range=[5,10]) #依然实例化

result = scaler.fit_transform(data) #fit_transform一步导出结果

result

“”"

array([[ 5. , 5. ],

[ 6.25, 6.25],

[ 7.5 , 7.5 ],

[10. , 10. ]])

“”"

当X中的特征数量非常多的时候,fit会报错并表示:数据量太大了我计算不了

此时使用partial_fit作为训练接口

scaler = scaler.partial_fit(data)

使用numpy来实现归一化

import numpy as np

X = np.array([[-1, 2], [-0.5, 6], [0, 10], [1, 18]])

#归一化

X_nor = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))

X_nor

#逆转归一化

X_returned = X_nor * (X.max(axis=0) - X.min(axis=0)) + X.min(axis=0)

X_returned

数据标准化 preprocessing.StandardScaler

数据标准化(Standardization,又称Z-score normalization):当数据(x)按均值(μ)中心化后,再按标准差(σ)缩放,数据就会服从为均值为0,方差为1的正态分布(即标准正态分布),公式如下:

x ∗ = x − μ σ x^* = \frac {x - \mu} {\sigma} x∗=σx−μ​

from sklearn.preprocessing import StandardScaler

data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]

scaler = StandardScaler() #实例化

scaler.fit(data) #fit,本质是生成均值和方差

scaler.mean_ #查看均值的属性mean_

array([-0.125, 9. ])

scaler.var_ #查看方差的属性var_

array([ 0.546875, 35. ])

x_std = scaler.transform(data) #通过接口导出结果

x_std.mean() #导出的结果是一个数组,用mean()查看均值

0.0

x_std.std() #用std()查看方差

#1.0

scaler.fit_transform(data) #使用fit_transform(data)一步达成结果

“”"

array([[-1.18321596, -1.18321596],

[-0.50709255, -0.50709255],

[ 0.16903085, 0.16903085],

[ 1.52127766, 1.52127766]])

“”"

scaler.inverse_transform(x_std) #使用inverse_transform逆转标准化

“”"

array([[-1. , 2. ],

[-0.5, 6. ],

[ 0. , 10. ],

[ 1. , 18. ]])

“”"

对于StandardScaler和MinMaxScaler来说,空值NaN会被当做是缺失值

  • 在fit的时候忽略

  • 在transform的时候保持缺失NaN的状态显示

尽管去量纲化过程不是具体的算法,但在fit接口中,依然只允许导入至少二维数组,一维数组导入会报错。通常来说,我们输入的X会是我们的特征矩阵,现实案例中特征矩阵不太可能是一维所以不会存在这个问题。

StandardScaler 和 MinMaxScaler 如何选择?

看情况

  • 大多数机器学习算法中,会选择StandardScaler进行特征缩放,因为MinMaxScaler对异常值非常敏感

  • 在PCA,聚类,逻辑回归,支持向量机,神经网络这些算法中,StandardScaler往往是最好的选择

MinMaxScaler在不涉及距离度量、梯度、协方差计算以及数据需要被压缩到特定区间时使用广泛,比如数字图像处理中量化像素强度时,都会使用MinMaxScaler将数据压缩于[0,1]区间之中。

建议先试试看StandardScaler,效果不好换MinMaxScaler。

除了StandardScaler和MinMaxScaler之外,sklearn中也提供了各种其他缩放处理(中心化只需要一个pandas广播一下减去某个数就好了,因此sklearn不提供任何中心化功能)

  • 在希望压缩数据,却不影响数据的稀疏性时(不影响矩阵中取值为0的个数时),我们会使用MaxAbsScaler

  • 在异常值多,噪声非常大时,我们可能会选用分位数来无量纲化,此时使用RobustScaler

  • 更多详情请参考以下列表:

在这里插入图片描述

缺失值


机器学习和数据挖掘中所使用的数据,永远不可能是完美的。很多特征,对于分析和建模来说意义非凡,但对于实际收集数据的人却不是如此,因此数据挖掘之中,常常会有重要的字段缺失值很多,但又不能舍弃字段的情况。因此,数据预处理中非常重要的一项就是处理缺失值


我们采用从泰坦尼克号提取出来的数据,这个数据有三个特征,如下:

  • Age 数值型

  • Sex 字符型

  • Embarked 字符型

import pandas as pd

#index_col=0是因为原数据中第1列本就是索引

data = pd.read_csv(r"…\datasets\Narrativedata.csv",index_col=0)

data.head()

在这里插入图片描述

缺失值填补 impute.SimpleImputer

class sklearn.impute.SimpleImputer (

missing_values=nan,

strategy=‘mean’,

fill_value=None,

verbose=0,

copy=True

)

这个类是专门用来填补缺失值的。它包括四个重要参数:

  • missing_values

告诉SimpleImputer,数据中的缺失值长什么样,默认空值np.nan

  • strategy

我们填补缺失值的策略,默认均值

输入"mean"使用均值填补(仅对数值型特征可用)

输入"median"用中值填补(仅对数值型特征可用)

输入"most_frequent"用众数填补(对数值型和字符型特征都可用)

输入"constant"表示请参考参数"fill_value"中的值(对数值型和字符型特征都可用)

  • fill_value

当参数startegy为"constant"的时候可用,可输入字符串或数字表示要填充的值,常用0

  • copy

默认为True,将创建特征矩阵的副本,反之则会将缺失值填补到原本的特征矩阵中去

import pandas as pd

#index_col=0是因为原数据中第1列本就是索引

data = pd.read_csv(r"…\datasets\Narrativedata.csv",index_col=0)

data.head()

data.info()

由运行结果可知Age和Embarked有缺失值

“”"

<class ‘pandas.core.frame.DataFrame’>

Int64Index: 891 entries, 0 to 890

Data columns (total 4 columns):

Column Non-Null Count Dtype


0 Age 714 non-null float64

1 Sex 891 non-null object

2 Embarked 889 non-null object

3 Survived 891 non-null object

dtypes: float64(1), object(3)

memory usage: 34.8+ KB

“”"

查看数据

Age = data.loc[:,“Age”].values.reshape(-1,1) #sklearn当中特征矩阵必须是二维

Age[:20]

“”"

array([[22.],

[38.],

[26.],

[35.],

[35.],

[nan],

[54.],

[ 2.],

[27.],

[14.]])

“”"

用各个值填补演示:

#填补年龄, 分别用均值、中位数、0填补

from sklearn.impute import SimpleImputer

imp_mean = SimpleImputer() #实例化,默认均值填补

imp_median = SimpleImputer(strategy=“median”) #用中位数填补

imp_0 = SimpleImputer(strategy=“constant”,fill_value=0) #用0填补

#fit_transform一步完成调取结果

imp_mean = imp_mean.fit_transform(Age) #均值填补

imp_median = imp_median.fit_transform(Age) #中值填补

imp_0 = imp_0.fit_transform(Age) # 使用0填补

imp_mean[:20] # 查看用均值填补后的前20条数据

imp_median[:10] # 查看用中值填补后的前20条数据

imp_0[:10] # 查看用0填补后的前20条数据

在这里我们用中位数填补Age,用众数填补Embarked:

#在这里我们使用中位数填补Age

data.loc[:,“Age”] = imp_median

#data.info()

#使用众数填补Embarked

Embarked = data.loc[:,“Embarked”].values.reshape(-1,1)

imp_mode = SimpleImputer(strategy = “most_frequent”)

data.loc[:,“Embarked”] = imp_mode.fit_transform(Embarked)

data.info() #

由结果可知填补已经完成了

“”"

<class ‘pandas.core.frame.DataFrame’>

Int64Index: 891 entries, 0 to 890

Data columns (total 4 columns):

Column Non-Null Count Dtype


0 Age 891 non-null float64

1 Sex 891 non-null object

2 Embarked 891 non-null object

3 Survived 891 non-null object

dtypes: float64(1), object(3)

memory usage: 34.8+ KB

“”"

data.head(20) #显示填补后的前20条数据

用Pandas和Numpy进行填补其实更加简单

import pandas as pd

data = pd.read_csv(r"…\datasets\Narrativedata.csv",index_col=0)

data.head()

data.loc[:,“Age”] = data.loc[:,“Age”].fillna(data.loc[:,“Age”].median())

#.fillna 在DataFrame里面直接进行填补

data.dropna(axis=0,inplace=True)

#.dropna(axis=0)删除所有有缺失值的行,.dropna(axis=1)删除所有有缺失值的列

#参数inplace,为True表示在原数据集上进行修改,为False表示生成一个复制对象,不修改原数据,默认False

处理分类型特征:编码与哑变量


在机器学习中,大多数算法等都只能够处理数值型数据,不能处理文字。在sklearn当中,除了专用来处理文字的算法,其他算法在fit的时候全部要求输入数组或矩阵,也不能够导入文字型数据(其实手写决策树和普斯贝叶斯可以处理文字,但是sklearn中规定必须导入数值型)

然而在现实中,许多标签和特征在数据收集完毕的时候,都不是以数字来表现的:

  • 学历的取值可以是 [“小学”,“初中”,“高中”,“大学”]

  • 付费方式可能包含 [“支付宝”,“现金”,“微信”]

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024b (备注Java)
img

那么如何才能正确的掌握Redis呢?

为了让大家能够在Redis上能够加深,所以这次给大家准备了一些Redis的学习资料,还有一些大厂的面试题,包括以下这些面试题

  • 并发编程面试题汇总

  • JVM面试题汇总

  • Netty常被问到的那些面试题汇总

  • Tomcat面试题整理汇总

  • Mysql面试题汇总

  • Spring源码深度解析

  • Mybatis常见面试题汇总

  • Nginx那些面试题汇总

  • Zookeeper面试题汇总

  • RabbitMQ常见面试题汇总

JVM常频面试:

Redis高频面试笔记:基础+缓存雪崩+哨兵+集群+Reids场景设计

Mysql面试题汇总(一)

Redis高频面试笔记:基础+缓存雪崩+哨兵+集群+Reids场景设计

Mysql面试题汇总(二)

Redis高频面试笔记:基础+缓存雪崩+哨兵+集群+Reids场景设计

Redis常见面试题汇总(300+题)

Redis高频面试笔记:基础+缓存雪崩+哨兵+集群+Reids场景设计

一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!

AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算

  • Netty常被问到的那些面试题汇总

  • Tomcat面试题整理汇总

  • Mysql面试题汇总

  • Spring源码深度解析

  • Mybatis常见面试题汇总

  • Nginx那些面试题汇总

  • Zookeeper面试题汇总

  • RabbitMQ常见面试题汇总

JVM常频面试:

[外链图片转存中…(img-qZBh2xK3-1712207081641)]

Mysql面试题汇总(一)

[外链图片转存中…(img-jEiRUjHb-1712207081641)]

Mysql面试题汇总(二)

[外链图片转存中…(img-37SYyowL-1712207081641)]

Redis常见面试题汇总(300+题)

[外链图片转存中…(img-WfhggUPZ-1712207081642)]

一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!

AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算

  • 27
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值