ACWING102. 最佳牛围栏
农夫约翰的农场由 NN 块田地组成,每块地里都有一定数量的牛,其数量不会少于1头,也不会超过2000头。
约翰希望用围栏将一部分连续的田地围起来,并使得围起来的区域内每块地包含的牛的数量的平均值达到最大。
围起区域内至少需要包含 FF 块地,其中 FF 会在输入中给出。
在给定条件下,计算围起区域内每块地包含的牛的数量的平均值可能的最大值是多少。
输入格式
第一行输入整数 NN 和 FF ,数据间用空格隔开。
接下来 NN 行,每行输出一个整数,第i+1i+1行输出的整数代表,第ii片区域内包含的牛的数目。
输出格式
输出一个整数,表示围起区域内每块地包含的牛的数量的平均值可能的最大值乘以1000得到的数值。
数据范围
1≤N≤1000001≤N≤100000
1≤F≤N
输入样例:
10 6
6
4
2
10
3
8
5
9
4
1
输出样式:
6500
思路
首先本题没有出现二分的特征词:“最大值最小” or “最小值最大” 并且给的数列不具备单调性,并且不适于排序,我们看到这种题可以先提出假设 比如,假设这道题用二分能解出
二分是二分性而不是单调性 只要满足可以找到一个值一半满足一半不满足即可 而不用满足单调性
在这里我们要二分的不是位置下表,而是数值。以上面的输入为例,最大是10最小是0,所以第一次mid=5,第二次mid=7.5,以此类推,直到找不到大于mid的数。
如果我们找到了一段连续的区间且区间长度不小于F且平均数大于我们二分的平均数 那么大于这个数且区间也满足的一定满足了 我们直接判断正确即可。
因为我们要找一段区间的平均数,根据平均数的一个基本应用,显而易见,对于一段序列,每个数减去我们所算的平均数,如果大于0 那么他本身就大于平均数,如果小于0 那么它本身就小于平均数 此时我们就能算出哪些数大于0 哪些数小于0 ,之后我们再使用前缀和,就能判断一个区间内的平均值是否大于或小于我们二分的平均数了
我们不仅需要找F大小区间内,我们还要找>F大小区间内的,我们如果用二次for太费时间了,我们这里可以使用双指针的做法,我们设i=0,j=Fi=0,j=F 每次使两个数++ 因为i,ji,j始终满足相距FF的距离,所以我们用一个变量minvminv来存储ii所遍历到的最小值,这样我们比较的距离一定是≥F≥F的,并且如果我们用jj位的前缀和数减去minvminv的话,就能得到我们的最优解,如果这个最优解>= 0 那么就满足我们的指定条件
import java.util.*;
public class Main{
static int n,m;
static int []a=new int[100010];
static double []sum=new double[100010];
public static void main(String[]args)
{
Scanner sc=new Scanner(System.in);
n=sc.nextInt();
m=sc.nextInt();
for(int i=1;i<=n;i++)
a[i]=sc.nextInt();
double l=0,r=0;
for(int i=1;i<=n;i++)
r=Math.max(r,a[i]);
while(r-l>1e-5)
{
double mid=(r+l)/2;
if(check(mid)) l = mid;
else r = mid;
}
System.out.println((int)(r*1000));
}
public static boolean check(double avg)
{
for(int i=1;i<=n;i++)
sum[i]=sum[i-1]+a[i]-avg;
double minv=0;
for(int i=0,j=m;j<=n;i++,j++)
{
minv=Math.min(minv,sum[i]);
if(sum[j]-minv>0)return true;
}
return false;
}
}