Fibonacci数列
无穷数列1,1,2,3,5,8,13,21,34,55,……,称为Fibonacci数列。它可以递归地定义为:
第n个Fibonacci数可递归地计算如下:
int fibonacci(int n)
{
if (n <= 1) return 1;
return fibonacci(n-1)+fibonacci(n-2);
}
- 编写完整的主函数,分别记录利用上述递归函数求第45,46,47,48个Fibonacci数所花费的时间。
#include<iostream>
using namespace std;
#include<time.h>
#include<math.h>
#include<stdlib.h>
int fibonacci(int n){
if(n<=1) return 1;
return fibonacci(n-1)+fibonacci(n-2);
}
int main()
{
clock_t start,end;
int n,i;
for(i=45;i<=48;i++){
start=clock();
cout<<fibonacci(i)<<endl;
end=clock();
cout<<"程序运行时间为:"<<(end-start)/CLK_TCK<<endl;
}
return 0;
}