- 博客(15)
- 问答 (1)
- 收藏
- 关注
原创 P7486 「Stoi2031」彩虹(NOI/NOI+/CTSC)
她定义所有满足 $l \le i \le r,l \le j \le r$ 的 $i,j$ 的 **依赖值** 之积为两个正整数 $l,r$ 的 **阻碍值**。现在她给了你一个正整数 $n$,并 $t$ 次询问你两个满足 $1 \le l \le r \le n$ 的正整数 $l,r$ 的 **阻碍值** $ans\bmod{32465177}$。对于 $100\%$ 的数据,$1 \le n \le 10^6,1 \le t \le 10,1 \le l_i \le r_i \le n$。
2024-12-18 20:14:33
165
原创 # 「GLR-R4」芒种
因为太饿,负责摆牌的天依不小心把 $2n$ 张牌中的 $m$ 张牌牌面朝上地摆放了,**这 $m$ 张牌的的类型恰好两两不同**,双方悄悄记住了它们的类型和位置,并将它们扣回,然后开始游戏。| $3$ | $\le5\times10^3$ | $\le5\times10^3$ | 有 | $10$ || $5$ | $\le5\times10^3$ | $\le5\times10^3$ | 无 | $40$ |
2024-11-16 13:09:30
1394
1
原创 # 「GLR-R3」清明
由于奇妙的物理原因,第 $i$ 级的雨水将在「下一个瞬间」滴向第 $i+1,i+2,\dots,\min\{i+k,n\}$ 级,也可能留在第 $i$ 级,但是每一种去向的雨水的单位体积都应是非负整数,且总和为 $a_i$。第二行输入 $n$ 个非负整数 $a_1,a_2,a_3,\cdots,a_n$,其中 $a_i$ 表示第 $i$ 级窗沿在这一瞬间的雨水体积。设 $c_k$ 表示从第 $k$ 级窗沿滴向第 $k+1$ 级窗沿的雨点体积,显然有 $c_3=0$。
2024-11-16 12:54:54
532
原创 # 「GLR-R4」小满
对于第二组测试数据:$\ell$ 的变化过程为:$0 \rightarrow 0 \rightarrow 1 \rightarrow 3 \rightarrow 6 \rightarrow 12$,而 $(12)_{10}=(1100)_2$。对于 $100\%$ 的数据,$1\leq T \leq 5$,$1\leq n \leq 10^5$,$0\leq d < 2^{16}$。此操作将给出额外可变参数 $d$,操作完成后 $\ell\gets \ell+d$,即杆的长度增加 $d$。
2024-11-16 12:49:46
585
原创 # 「GLR-R3」雨水
你可以**任取一个**自然数 $k$ 以及一个序列 $\lang 1,2,\dots,n\rang$ 的,长度为 $2k~(k\in\mathbb N)$ 的**子序列** $P$,并对于所有 $i=1,2,\dots,k$,交换 $A_{P_{2i-1}}$ 与 $A_{P_{2i}}$ 的值。)她要求阿绫只能选取 $A$ 的一个**长度为偶数的子序列**(长度可以为 $0$),交换序列里第 $1$ 盆和第 $2$ 盆,第 $3$ 盆和第 $4$ 盆……的位置,然后放回它们原来的位置中。
2024-11-16 12:42:27
581
原创 #「GLR-R4」大暑
$ 包含 $\{0,1,\dots,n-1\}$ 的所有 $n$ 阶排列,对于第 $i$ 个点阵图,工作人员将用字典序第 $i$ 小的排列 $\sigma_i$ 为 $X_i,Y_i$ 连线配对:对于点 $P(0,y)\in X_i$,作一条线段将其与点 $Q(1,\sigma_{i,y})\in Y_i$ 相连。]$ 和任意一点 $P$,使得两个上色方案各自完成后,第 $i$ 个点阵图中染过点 $P$ 的颜色集合不同。在完成前两步后,画作的全貌如下。对于 $100\%$ 的数据,$n\le10^6$。
2024-11-16 09:52:01
272
原创 # 寻宝(Treasure)
铃还不知道地图的形态,正在考虑策略时,澪说:「我知道地图中恰好有 $k$ 个墙壁哦,对于所有可能的地图,有多少种情况你能找到恰好 $m$ 个宝物呢?对于 $100\%$ 的数据,$2\le n \le 3\times 10^6$,$m,k\geq 2$,$m+k\leq 2n$。**空地** 可以被自由穿过,除了第一列的下面都埋藏有宝物,地图的第一列一定是空地,也是地图的入口。可以看出,有且仅有图中 $4$ 种情况可以由入口走到恰好 $2$ 块空地上,即获得 $2$ 个宝物。**墙壁** 不能被穿过。
2024-11-16 09:39:09
420
原创 「RiOI-2」change 题解
对于所有数据,$1\le t \le 10^5$,$2\le n$,$\sum n\le 2\times 10^5$,$1\le x_i\le 10^9$,$0\le c_i,v_i\le 10^9$。一次操作为:选定一个 $i$ 满足 $c_i \geq x_i$,让 $c_i\gets c_i - x_i$,$c_{i+1}\gets c_{i+1}+ 1$。给定 $n$ 种物品,每种物品 $i$ 价值为 $v_i$,个数为 $c_i$。| $1$ | / | / | 特殊性质 A | $5$ |
2024-11-16 09:30:41
1511
原创 # 「GLR-R4」夏至
具体地,对于 $n>1$,设 $n$ 的**唯一分解**形式为 $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$,则有 $f(n)=f(p_1^{\alpha_1})f(p_2^{\alpha_2})\cdots f(p_k^{\alpha_k})$。令积性函数 $f(n)$ 满足 $f(p^c)=p^{\gcd(c,k)}$,其中 $k$ 为给定常数,$p$ 为素数,$c$ 为正整数。现在,给定 $n,m,k$,请求出。天依来了,所以阿绫来了。
2024-11-16 09:20:22
1413
空空如也
C++魔法阵的守护者
2025-04-10
DEV-C++#流星の陨落
2025-01-19
DEV-C++狼人の杀戮
2025-01-19
NordicOI 2024 T2
2025-01-17
NordicOI 2024 T1
2025-01-17
P4530 [CTSC2006] 投篮游戏
2024-11-08
合肥2015年合肥市信息学科普日市赛
2024-11-02
C++最多奖励(win)
2024-11-02
2015年合肥市市赛小学组-最多奖励(win)
2024-11-01
圆形的周长(perimeter)
2024-10-31
TA创建的收藏夹 TA关注的收藏夹
TA关注的人