把SVM应用到具有非线性决策边界数据集上的方法,其关键在于将数据从原先的坐标空间
x
变换到一个新坐标空间
关联分析的两个步骤:
1. 先找到所有的频繁项集。(有Apriori 算法和FP树表示法)
2. 利用生成的频繁项集形成规则
数据挖掘笔记
最新推荐文章于 2024-01-09 16:03:07 发布
把SVM应用到具有非线性决策边界数据集上的方法,其关键在于将数据从原先的坐标空间
x
变换到一个新坐标空间
关联分析的两个步骤:
1. 先找到所有的频繁项集。(有Apriori 算法和FP树表示法)
2. 利用生成的频繁项集形成规则