数据挖掘笔记

把SVM应用到具有非线性决策边界数据集上的方法,其关键在于将数据从原先的坐标空间 x 变换到一个新坐标空间Φ(x)从而可以在变换后的坐标空间中使用一个线性的决策边界来划分样本。其中属性变换方法的一个潜在问题是,对于高维数据可能产生维灾难,可以使用一种称为核技术的方法是的非线性SVM避免这个问题。
关联分析的两个步骤:
1. 先找到所有的频繁项集。(有Apriori 算法和FP树表示法)
2. 利用生成的频繁项集形成规则

Python数据挖掘学习笔记主要包括以下几个方面的内容:Python基础知识、Python爬虫技术、Python数据分析与数据挖掘。其中,Python基础知识部分介绍了Python编程语言的基本语法、数据类型、流程控制等内容,为数据挖掘学习打下了基础。Python爬虫技术部分介绍了如何使用Python编写爬虫程序,从网页中获取所需数据。Python数据分析与数据挖掘部分则介绍了使用Python进行数据分析和数据挖掘的相关技术和工具。 在Python数据挖掘中,还涉及到一些扩展库的使用,可以使用pip或apt-get进行安装,例如numpy库可以使用命令"sudo pip install numpy"或"sudo apt-get install python-numpy"进行安装。 另外,Matplotlib是Python中最常用的绘图库之一,主要用于绘制二维图形,也可以绘制简单的三维图形。下面是一个使用Matplotlib进行简单绘图的示例代码: ```python import numpy as np import matplotlib.pyplot as plt x = np.linspace(0, 10, 1000) y = np.sin(x) z = np.cos(x ** 2) plt.figure(figsize=(8, 4)) plt.plot(x, y, label='$\sin x$', color='red', linewidth=2) plt.plot(x, z, 'b--', label='$\cos x^2$') plt.xlabel('Time(s)') plt.ylabel('Volt') plt.title('A Simple Example') plt.ylim(0, 2.2) plt.legend() plt.show() ``` 这段代码使用了numpy库生成了一组x轴的数据,然后分别计算了对应的y轴和z轴的数值。接下来使用Matplotlib进行绘图,其中plt.plot函数用于绘制曲线,plt.xlabel和plt.ylabel分别设置x轴和y轴的标签,plt.title设置图的标题,plt.ylim设置y轴的范围,plt.legend用于显示图例,plt.show用于显示图形。 通过学习这些内容,你可以掌握Python数据挖掘的基本知识和常用技术,为进一步的学习和实践打下坚实的基础。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [python数据挖掘学习笔记](https://blog.csdn.net/yinghuoai/article/details/88392141)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [python数据挖掘笔记](https://blog.csdn.net/djm82755/article/details/101452842)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值