作者按
在数字化浪潮汹涌澎湃的当下,数据已跃升为企业的核心资产。然而,数据资产的价值评估却面临诸多困境,如缺乏统一标准、评估方法复杂等。橙鸟自研数据资产评估平台应运而生,为解决这些难题提供了专业、高效的解决方案。
01 政策引领,时代契机
近年来,一系列政策的出台为数据资产评估指明了方向。
-
2020 年中评协印发的《资产评估专家指引第 9 号 —— 数据资产评估》,率先对评估方法与注意事项给予指引,激发行业探索热情。
-
2023 年 8 月,财政部《企业数据资源相关会计处理暂行规定》明确数据资源入表细则,稳固其生产要素地位。
-
同年 9 月,财政部指导下的《数据资产评估指导意见》进一步细化评估关键要素,规范操作流程。
-
2024 年 1 月,《关于加强数据资产管理的指导意见》从多维度规划数据资产管理,构建完备体系。
这些政策的接力落地,为数据资产评估市场奠定了坚实基础,催生企业对专业评估工具的强烈需求。
02 精准定位,破解难题
2.1 行业需求及痛点
企业数据资产的价值难以量化,其评估定价与传统方法相比复杂很多,缺少统一定价标准以及先进工具和技术的支持,面向数据资产评估,企业普遍会存在以下的困难:
1、数据资产权属分析比较复杂;
2、数据资产形成成本难以合理确定,对数据的估值来说,应用成本法的问题在于数据生产涉及多元主体,成本不易区分,且贬值因素难以估算;
3、数据资产收益不稳定、难预测,应用收益法时,数据的时效性、使用期限评估又成为难点;
4、数据资产变化性大,应用市场法时,又受制于数据要素市场尚不活跃,缺乏足够案例支持
2.2 产品定位
数据资产评估平台用于数据资产价值定量评估阶段,通过规范化的数据资产价值评估方法,对企业数据资产价值进行量化和评估。基于企业数据资产的成本因素、场景因素、市场因素和质量因素,对企业数据资产进行分析和评估,以提高评估效率和准确性,保证评估过程采样信息及计算过程的可追溯,可快速生成价值评估报告。
平台针对企业数字资产目录导入,采用基于内置的多种数据资产评估模型,实现企业数字资产评估管理,支持数据资产目录集成导入、数据资产价值评估、数据资产质量评估等功能模块。
2.3 用户群体
该产品主要面向数字化企业、资产运营机构、第三方评估机构、数据交易所和金融信贷部门,其中:
-
数字化企业更多关注于数据资产盘点、数据质量评估和数据资产定价;
-
资产运营机构更多关注于数据质量评估、数据资产定价;
-
第三方评估机构更多关注于数据资产评估报告、数据质量评估结果;
-
数据交易所和金融信贷部门则更多关注于数据资产上架凭证、数据资产评估报告。
2.4 产品价值
产品可以为企业数据资产评估提供以下四大能力提升:
-
数据资产导入与集成能力
平台可以适配多源数据资产以及相关元数据的集成与导入,形成分层分类的数据资产管理目录。
-
数据质量评估管理能力
平台建立数据质量评估规则,按照评估规则进行数据质量的评估,并生成评估结果。
-
数据资产价值评估能力
平台提供专业的数据资产评估模型,能够准确且高效的对数据资产进行价值评估。
-
可视化评估报告输出能力
平台以可视化报告的方式,客观真实的输出数据资产的价值评估结果。
03 架构卓越,稳健创新
3.1 产品系统架构
企业数据资产通过数据资产盘点,形成企业数据资产清单,包括:源数据、API接口、数据产品,通过平台的数据集成将清单导入到系统中,并形成数据资产目录。
用户利用平台提供的评估功能,从数据资产目录中提取要评估的对象,并对评估对象创建评估任务;系统内置了三种主流的评估方法的模型:成本法评估模型、市场法评估模型和收益法评估模型,用户可以依据当前评估任务的特点,选择一种或者多种评估方法模型,对数据资产进行评估打分,进而形成评估结果。
评估结果以评估报告和评估报表的方式进行呈现,可以方便用户对数据资产评估成果进行导出。系统提供专业的评估模型,并可以随政策及业务场景灵活调整参数,并提供数据质量评估和数据资产价值评估能力。
3.2 产品技术框架
平台依托现有的软硬件环境支撑,可以部署在物理软硬件环境,也可部署在虚拟化云端环境中;平台的数据存储在关系型数据(如MySQL)或者分布式环境均可(如HBase)中。
平台后端整体技术框架按照数据采集、数据计算和数据共享进行构架,其中数据采集技术主要是满足数据资产集成需求,可以通过ETL、Kafka、MQ等技术集成数据源接口,通过API技术、HTTP协议等集成API开发接口;通过大数据技术,对接数据源为大数据形式并形成数据资产的数据;通过REST、Https等技术方式,实现数据资产评估成果的对外共享。
平台前端技术框架通过数据驱动页面、跨平台的技术实现,包括:Vue2和Html5,其中采用VUE2在前端实现采用数据驱动视图、组件化模式,提高代码复用率,实现视图变化随着数据变化;采用Html5是为了保障跨平台的,确保页面在不同类型的硬件(PC、平板、手机、电视机等等)之上均可运行。
3.3 产品功能架构
平台面向企业用户、资产运营管理机构、第三方评估机构、数据交易所、金融信贷部门等用户,提供了数据资产导入、数据资产评估对象管理、数据资产评估模型管理、数据资产评估任务管理、数据资产质量评估、数据资产评估报告生成以及系统管理等功能,实现对企业数据资产的盘点、质量评估、价值评估。其中:
数据资产目录导入模块:实现对企业数据资产目录的数据导入功能,包括了对数据资产源数据集成、数据资产接口集成、数据源集成和数据资源目录的管理功能。
数据资产评估对象管理模块:实现了对待评估数据资产对象的管理,包括:数据资产评估对象创建、数据资产评估对象编辑、数据资产评估对象删除、评估对象查询等功能。
数据资产评估任务管理模块:实现对评估对象评估过程的管理,包括了评估任务创建、评估任务修改、评估参数配置、评估任务执行、评估结果预览、评估报告查看等功能。
数据资产质量评估模块:实现对数据资产对象的数据质量评估管理,包括了数据质量配置规则、数据完整性评估、数据有效性评估、数据准确性评估、数据唯一性评估、数据及时性评估、数据质量评估结果生成、日志监控等功能。
数据资产评估模型管理模块:实现了系统内置的评估模型的配置管理,包括模型管理、模型指标配置、应用管理、应用超市、任务调度中心等功能。
数据资产评估报告模块:实现了对数据资产评估成果的呈现功能,包括:数据资产评价、数据资产评估报告查询、评估报告预览和评估报告下载等功能。
3.4 产品数据流
企业数据资产目录有如下几种来源:
1)数据资产管理平台
2)数据资产运营平台
3)人工盘点数据资产目录
对接数据资产管理平台或者数据资产运营平台,以数据交换功能实现对数据产品目录的导入,即将数据资产目录通过数据资产定义格式,将数据集成接入到数据资产评估平台;在没有以上数据资产目录管理平台情况下,可以将数据资产整理成指定格式的数据目录文件,通过平台数据资产导入功能,实现对数据资产目录的数据接入。
企业的数据资产评估主要体现在两个方面:
1)数据资产质量评估
2)数据资产价值评估
其中数据资产质量评估,是数据资产价值评估的前提,评估形成质量评估成果是价值评估的重要组成因素;在完成数据资产质量评估后,可以继续完成对数据资产价值评估任务。
3.5 产品业务流
用户对数据资产进行评估,从业务角度上看主要分为以下几步:
1、数据资产目录配置
用户将各种企业数据资产进行盘点,盘点后形成的数据资产清单,导入或者集成到平台中,形成数据资产目录。
2、创建评估对象
用户将要评估的数据资产创建为评估对象,后续的评估过程将围绕着评估对象展开。
3、创建评估任务
用户将待评估数据资产创建了评估对象后,需要创建评估任务,即何时需要对哪些数据资产进行评估。
4、选择评估模型
在创建评估任务的同时,用户需要选择评估任务对应的评估模型,系统将按照评估模型对数据资产进行价值评估。
5、生成评估报告
在系统完成评估任务后,会自动生成评估结果,评估的结果可以选择评估报告模版进行导出。
04 功能全面,灵活组合
05 场景多元,价值凸显
5.1 数据资产价值评估
依据《企业数据资源相关会计处理暂行规定》,通过系统功能完成评估后的数据资产可以转为存货和无形资产,入企业资产负债表。
5.2 数据资产流通交易
经过系统价值评估的数据资产,进入数据流通市场(如数交所),进行交易流通,为企业带来收益。
5.3 数据资产融资质押
企业数据资产经过价值评估并进行登记公示后,可以将数据资产做为质押,进行融资或贷款。
06 优势显著,值得信赖
6.1 灵活适配,轻松部署
系统全面适配各种底层存储、计算技术,支持容器化部署,即使用户零基础也能轻松完成产品部署。系统全面适配各种底层存储计算平台,包括HDP、CDH、华为FI以及MPP数据库Mysql、Oracle、DB2等;根据项目规模灵活选择项目方案,单机版或集群版;支持容器化部署,零基础半小时轻松完成全套产品部署。
6.2 支持二次开发扩展
平台架构支持二次开发,并提供完善、全面的材料,支持客户对平台进行二次开发,按业务需求灵活扩展。
6.3 模型调整能力强
资产评估模型参数,可随着政策和标准的变化而随时进行灵活调整;模型参数可根据用户不同的业务场景进行增减和调整。