【数据分析小兵】专注数据中台产品领域,包含数据资源管理、数据集成、数据建模、数据开发、数据服务、数据可视化、数据治理相关产品以及相关行业的技术方案的分享。对数据中台产品想要体验、做二次开发、关注方案资料、做技术交流的朋友们,可以关注我。记得帮小兵点赞、转发、在看支持三连哦!
作者按
数据建模产品不仅是数字化转型的关键工具,更是实现数据资产化的基础。它能够提升数据质量、优化数据管理、加速数据分析、促进数据共享与协作、支持决策制定、推动业务创新。利用好数据建模工具,可以帮助企业提升数据价值、开发并形成数据资产,实现数据到资产的转变,从而在激烈的市场竞争中保持竞争力。
数据建模做为现代数据分析的核心技术,已经广泛的应用于金融、制造、医疗、公安、消费、互联网、能源等行业,为企业的决策和创新提供了强有力的支持。你知道在这些行业里,数据建模有哪些应用场景么?小兵接下来就为您一一介绍。
01 应用场景介绍
1.1 金融行业应用场景
金融数据建模可以说是金融行业的必备技能了,通过数据收集、数据处理、数据建模、模型训练等一系列步骤,为风险管理、信用评估、股票预测、投资组合优化等场景提供数据支撑。
风险管理场景:风险管理包括投资风险、市场风险、操作风险等,金融市场充满了不确定性,各类风险无处不在,可以通过数据建模与分析的方式,构建如波动率模型、风险价值模型、操作风险度量模型、收益率模型等金融模型,帮助客户有效、稳健的管理风险。
信用评估场景:可以通过构建信用评分模型、信用风险矩阵等对借款人的信用数据进行评估和量化,为信贷审批提供高效、客观、准确的数据依据。
股票价格预测场景:股票价格预测是金融领域中最具挑战性的问题之一,数据建模为股票价格预测提供了多种方法,包括时间序列分析、回归模型、神经网络等。以时间序列分析模型为例,利用历史数据中的股票价格序列,通过建立ARMA、ARIMA等模型进行预测。这些模型能够捕捉股票价格随时间变化的趋势和季节性波动,从而对未来价格进行预测。
投资组合优化场景:是指在多种不同的投资方式中,找到一种最优的投资组合,以达到最大的投资收益和最小的风险,数据建模在此场景中发挥了重要的作用,可以构建Markowitz模型、风险评价等模型来帮助客户实现最优的投资组合。以Markowitz模型为例,该模型将投资者的投资组合看作是不同股票的组合,通过分析股票之间的相关性和收益率来定量描述股票的风险。
1.2 制造行业应用场景
在制造行业,数据建模同样具有非常广泛的应用,包括了质量管控、供应链优化、设备健康管理、生产能力管理等应用场景。
质量管控场景:产品质量是制造行业的核心指标,直接影响用户体验,可以通过构建来料异常监测、产品抽检分析、不合格品分析、质量问题追溯等模型,及时发现并纠正潜在质量问题。
供应链优化场景:通过构建库存分析、采购执行分析、库存结构分析、库存品类分析、库存鲜度分析、已售未送分析等模型,优化物流路径、库存水平和生产计划等关键环节,降低供应链成本并提高响应速度。
设备健康管理场景:构建设备资源模型、设备预测性维护模型,通过分析设备运行状态、平均寿命和历史数据,预测设备故障发生时间,提前进行干预和维护,避免设备直接损坏和影响生产带来的损失。
生产能力管理场景:通过构建人员效率分析、生产效率分析、设备稼动分析、生产进度监控、产能分析等模型,可以对生产流程、人员能力、设备效率进行持续优化,提高生产效率,进一步提升产能。
1.3 医疗行业应用场景
医疗行业是一个具有巨大数据量的行业,数据建模在医疗行业的应用也是越来越广泛,主要包括:疾病预测与防控、医疗资源优化配置、临床决策支持、药物研发等应用场景。
疾病预测与防控场景:通过分析大量患者的病历数据、症状、生活习惯、遗传信息等,建立疾病预测模型,提前发现患者可能患上的疾病,一边及时采取措施进行预防或者早期干预,从而提高治疗效果。
医疗资源优化配置场景:数据建模在医疗资源的合理配置中发挥着重要作用。通过建立医院资源分配模型、医疗设备调度模型和人力资源规划模型,对大量的医院、科室和医生的就诊数据进行分析挖掘,可以提高医院内部资源的利用效率,优化医疗设备的调度,确保医疗服务的及时性和有效性。
临床决策支持场景:数据建模可以构建诊断辅助模型和治疗方案选择模型,通过分析大量的临床数据、病历数据,结合患者的具体情况和医疗数据,为一声提供个性化的诊断和治疗建议,帮助医生做出更准确的判断。
药物研发场景:在药物研发过程中,数据建模可以用于药物动力学模型和药效评估模型的构建。通过分析药物分子、基因组数据、患者数据,模型可以快速识别药物分子,并模拟药物在人体内的代谢过程和药效反应,从而加速药物的研发周期,提高药物研发的效率和成功率。
1.4 消费行业应用场景
消费行业是个快速迭代的行业,强烈的竞争环境和诸多困难挑战给了数据建模大展拳脚的机会。消费行业的应用场景主要包括市场营销、消费者行为分析和渠道运营。
市场营销场景:通过构建市场大盘分析、品类流量分析、竞品销售分析、用户渗透分析等模型,帮助企业了解市场趋势、客户行为和竞争对手,总而制定更精准的营销策略。通过构建客户细分、营销效果分析模型,企业可以提高客户体验,和营销效果。
消费者行为分析场景:通过构建购买习惯分析、复购分析、内容推荐模型、流量转化分析等模型,对用户的浏览、点击、购买、评论等数据进行分析,了解用户的的兴趣、偏好和消费习惯,并依此进行精准的内容投放,提高获客成功率,提升用户体验。
渠道运营场景:在渠道运营场景中,数据建模可以通过客户画像、营销效率分析、竞品分析、推广效果分析等模型,帮助企业了解客户需求、渠道推广和营销效果,从而及时调整营销和推广策略,打造个性化推广和促销活动,提升企业渠道运营管理能力。
由上可见,数据建模在各行各业百花齐放,应用广泛。想要用好数据建模,除了要有明确的业务需求和应用场景外,少不了一款高效、便捷的数据建模工具,能够快速的将模型设计师的设计思路快速转化成模型,并投入到业务应用中。小兵推荐一款数据建模分析平台产品,它具有丰富的预置算子库、可视化拖拽设计方式、低使用门槛等优点,可以完美满足各类场景建模的需求。
02 数据建模分析平台介绍
2.1 平台功能
我的工作台:集中展示日常工作中常用到的功能,包括我的数据资源、我的模型、我的应用和我的任务。用户可直接对权限范围内的数据、模型、任务进行查看、编辑、设计、共享、执行等管理操作。
数据仓库:支持多源异构数据的适配与集成,可以对数据链接和内外部数据源进行配置管理。支持对数据进行分层分类管理和高效的数据治理,提供数据权限管理功能。
算子工坊:平台内置丰富的算子库,包括基础算子和业务算子,支持算子的自定义功能。
模型工厂:模型的设计和管理功能,支持模型的可视化拖拽式设计,包括我的模型、可视化模型设计、模型发布、应用发布等功能。
模型训练室:制定训练任务,对模型和应用进行训练,支持训练结果查看和训练反馈功能,只有通过训练的模型和应用才可以上架进入到应用市场,包括训练任务管理、训练结果、训练反馈、上下架管理等功能。
应用市场:对已经上架的成熟模型和应用进行管理,支持模型和应用的上下架、执行操作。所有用户都有权限进行查询、查看、使用和收藏。
调度中心:管理模型和训练的任务,包括任务的新增、编辑、查看、删除、执行等,支持任务日志功能。
2.2 功能展示
| |
| |
| |
| |
2.3 产品价值
l提升企业数据价值:帮助企业更好地理解数据结构、提高数据质量,并支持更高效的数据分析和数据开发,提高数据的价值。 l降低数据建模成本:实现可视化拖拽式模型设计功能,并内置丰富的算子库,极大降低建模工作门槛,提高建模效率。 l发现新的业务机会:通过对现有业务数据和应用系统的挖掘,发现新的业务机会,为企业带来直接的商业价值。 l实现数据驱动决策:数据可视化建模平台可以帮助企业提取有价值的信息并进行分析,并以可视化方式展现分析结果,支撑用户决策。
03 总结
数据建模在众多行业和领域都有广泛的应用,根据企业实际情况和需求,选择合适的数据建模方法和工具,可以帮企业优化业务流程、提高决策效率和准确性,持续保持市场竞争力。如果您有数据建模产品的需求,可以后台联系小兵,做进一步的技术与合作方面的沟通。