2.1 \quad 复变函数
2.1.1 \quad 复变函数的定义
对应实变函数,同样也可以建立从复变量映射到复变量的函数。
即可以定义映射
f
:
S
↦
S
∗
f:S\mapsto S^*
f:S↦S∗,
S
,
S
∗
⊆
C
S,S^*\subseteq\mathbb{C}
S,S∗⊆C,对于任一复数
z
∈
S
z\in S
z∈S,都对应一个或多个
w
∈
S
∗
w\in S^*
w∈S∗. 用记号表示为
w
=
f
(
z
)
w=f(z)
w=f(z).
上述表述中,
S
S
S 为 定义集合,
S
∗
S^*
S∗ 为 函数值集合;
S
S
S 是
f
f
f 的 定义域;
w
w
w 是
z
z
z 的 象(映象),
z
z
z 是
w
w
w 的 原象 。
为了形象地表示复变函数的映射情况,通常用从一个复平面映射到另一个复平面的方式来体现函数的几何特征。
2.1.2 \quad 复变函数的图像表示
【例
2
-
1
2\verb|-|1
2-1】用图像表示函数
w
=
z
2
w=z^2
w=z2.
具体变换式与曲线对应方程如下:
第一组方程描述
x
-
y
x\verb|-|y
x-y 平面映射到
u
-
v
u\verb|-|v
u-v 平面的变换。
第二、三组方程描述
u
-
v
u\verb|-|v
u-v 平面上平行于
x
,
y
x,y
x,y 两轴的直线对应在
x
-
y
x\verb|-|y
x-y 平面中的原象。
当然也可以观察辐角的变化:
同时也可以观察
u
-
v
u\verb|-|v
u-v 平面上的每个单位小正方形区域对应在
x
-
y
x\verb|-|y
x-y 平面中的原象:
不难看出,在两复平面内,原象中的两条相交直线形成的夹角在经过变换后没有发生变化。称满足此条件的函数映射本身为 共形映射 或 保形映射 。共形映射和的具体内容会在之后提及。
2.1.3 \quad 复变函数在不同坐标下的形式转换
同一个函数在不同类型的平面内几何特征也不同。上例中若将
x
-
y
x\verb|-|y
x-y 平面与
u
-
v
u\verb|-|v
u-v 平面都转化为极坐标,可得到下面的图像:
容易看出,该例中极坐标下函数的图像变得尤其简单。转化坐标对研究某些函数很有帮助。
同样地,也可以将复变函数用指数函数形式来表示。
【例
2
-
2
2\verb|-|2
2-2】用图像表示函数
w
=
e
z
w=e^z
w=ez.
以下直接给出图像的两复平面上的等值线与辐角的对应关系图像。
2.1.4 \quad 复变函数的反函数
复变函数也有反函数的概念。按照实变函数的定义进行类比,可以得到如下定义:
若函数
w
=
f
(
z
)
w=f(z)
w=f(z) 的定义集合为
z
z
z 平面上的集合
S
S
S,函数值集合为
w
w
w 平面上的集合
S
∗
S^*
S∗。对于映射
f
:
S
↦
S
∗
f:S\mapsto S^*
f:S↦S∗,
S
∗
S^*
S∗上每一点
w
w
w 必对应着
S
S
S 中的一个(或多个)点,由此在
S
∗
S^*
S∗ 上就确定了一个单值(或多值)函数
z
=
φ
(
w
)
z=\varphi(w)
z=φ(w),称为函数
w
=
f
(
z
)
w=f(z)
w=f(z) 的 反函数,也称为映射
w
=
f
(
z
)
w=f(z)
w=f(z) 的 逆映射。
也即:对于任意的 w ∈ S ∗ w\in S^* w∈S∗,有 w = f [ φ ( w ) ] , w=f[\varphi(w)], w=f[φ(w)],当反函数为单值函数时,也有 z = φ [ f ( z ) ] , z ∈ G . z=\varphi[f(z)],\quad z\in G. z=φ[f(z)],z∈G.
称正映射与逆映射都为单值的函数是 一一的,称对应的集合 S S S 和 S ∗ S^* S∗ 是 一一对应 的。
2.2 \quad 复变函数的极限和连续性
2.2.1 \quad 复变函数的极限
Ⅰ . \bold{Ⅰ}.\ \, Ⅰ. 极限的定义
设函数 f f f 在 z 0 z_0 z0 的去心邻域中有定义,当 z z z 趋近于 z 0 z_0 z0 时, lim z → z 0 f ( z ) = w 0 \lim_{z\to z_0}{f(z)}=w_0 z→z0limf(z)=w0指 w = f ( z ) w=f(z) w=f(z) 可以无限接近于 w 0 w_0 w0,只要 z z z 足够接近 z 0 z_0 z0 而不等于它。
按照实变函数中极限的 ε - δ \varepsilon\verb|-|\delta ε-δ 定义,即:对于 ∀ ε > 0 \forall\ \varepsilon>0 ∀ ε>0, ∃ δ > 0 \exist\ \delta>0 ∃ δ>0, s.t. \text{s.t.} s.t. 0 < ∣ z − z 0 ∣ < δ \ \ \ 0<|z-z_0|<\delta 0<∣z−z0∣<δ 时, ∣ f ( z ) − w 0 ∣ < ε . |f(z)-w_0|<\varepsilon. ∣f(z)−w0∣<ε.
注意:极限定义中
z
z
z 趋向于
z
0
z_0
z0 的方式是任意的。(类比多元实变函数极限)
Ⅱ . \bold{Ⅱ}.\ \, Ⅱ. 极限定理
定理一 【极限唯一定理】 \quad 设函数 f ( z ) f(z) f(z) 在一点 z 0 z_0 z0 处存在极限值,那么极限值唯一。
定理二 【极限分部定理】
\quad
设函数
f
(
z
)
=
u
(
x
,
y
)
+
i
v
(
x
,
y
)
,
A
=
u
0
+
i
v
0
,
z
0
=
x
0
+
i
y
0
,
f(z)=u(x,y)+iv(x,y),\quad A=u_0+iv_0,\quad z_0=x_0+iy_0,
f(z)=u(x,y)+iv(x,y),A=u0+iv0,z0=x0+iy0, 那么
lim
z
→
z
0
f
(
z
)
=
A
\displaystyle{\lim_{z\to z_0}{f(z)}=A}
z→z0limf(z)=A 的充要条件是
lim
(
x
,
y
)
→
(
x
0
,
y
0
)
u
(
x
,
y
)
=
u
0
,
lim
(
x
,
y
)
→
(
x
0
,
y
0
)
v
(
x
,
y
)
=
v
0
.
\lim_{(x,y)\to(x_0,y_0)}{u(x,y)}=u_0,\quad\lim_{(x,y)\to(x_0,y_0)}{v(x,y)}=v_0.
(x,y)→(x0,y0)limu(x,y)=u0,(x,y)→(x0,y0)limv(x,y)=v0.
定理三 【极限四则运算】
\quad
设
lim
z
→
z
0
f
(
z
)
=
A
,
lim
z
→
z
0
g
(
z
)
=
B
\displaystyle{\lim_{z\to z_0}{f(z)=A}},\,\,\displaystyle{\lim_{z\to z_0}{g(z)=B}}
z→z0limf(z)=A,z→z0limg(z)=B,那么
1.
lim
z
→
z
0
f
(
z
)
±
g
(
z
)
=
A
±
B
;
\qquad\qquad\qquad\qquad\qquad\ \, 1. \ \displaystyle{\lim_{z\to z_0}{f(z)\pm g(z)=A\pm B}\; ;}
1. z→z0limf(z)±g(z)=A±B;
2.
lim
z
→
z
0
f
(
z
)
g
(
z
)
=
A
B
;
\qquad\qquad\qquad\qquad\qquad\ \,2. \ \displaystyle{\lim_{z\to z_0}{f(z)g(z)=AB}\; ;}
2. z→z0limf(z)g(z)=AB;
3.
lim
z
→
z
0
f
(
z
)
g
(
z
)
=
A
B
(
B
≠
0
)
.
\qquad\qquad\qquad\qquad\qquad\ \,3. \ \displaystyle{\lim_{z\to z_0}{\frac{f(z)}{g(z)}=\frac{A}{B}}\quad (B\ne 0).}
3. z→z0limg(z)f(z)=BA(B=0).
Ⅲ . \bold{Ⅲ}.\ \, Ⅲ. 无穷远点的极限
将无穷远点 ∞ \infty ∞ 归入复平面,并且使用相关的极限能够带来许多便利。将纳入了无穷远点的复平面称为 扩充复平面 。
在扩充复平面上表示无穷远点时,可以先想象在复平面原点的正上方存在一个球与之相切于原点。定义球的北极 N N N 为球上在原点正上方的点,南极 S S S 即为原点 O O O ,则原来的复平面上任一点 z z z 都能与 N N N 相连并交于球面与另一点 P P P ,如图所示。由此,我们可以建立 P P P 与 z z z 的一一对应关系。而北极点 N N N 则定义为无穷远点。上述定义的球面被称为 复球面 或 黎曼球面。它是一种对复数平面加上一个无穷远点的扩张。
引入无穷远点以后,我们可以在原有极限的定义中,把
z
z
z 或
w
w
w 的适当的领域替换为
∞
\infty
∞ ,并且以下定理成立:
上述定理均可用
ε
-
δ
\varepsilon\verb|-|\delta
ε-δ 定义证明。
2.2.2 \quad 复变函数的连续性
Ⅰ . \bold{Ⅰ}.\ \, Ⅰ. 连续的定义
类比实变函数,复变函数的连续性定义也以极限的概念为基础。
复变函数的连续性定义由以下三个条件共同决定:
- f ( z 0 ) f(z_0) f(z0) 存在 ; ; ;
- lim z → z 0 f ( z ) \displaystyle{\lim_{z\to z_0}{f(z)}} z→z0limf(z) 存在 ; ; ;
- lim z → z 0 f ( z ) = f ( z 0 ) \displaystyle{\lim_{z\to z_0}{f(z)}=f(z_0)} z→z0limf(z)=f(z0) . . .
当然,第三个条件也可以用极限的 ε - δ \varepsilon\verb|-|\delta ε-δ 定义描述。
如果 f ( z ) f(z) f(z) 在区域 D D D 范围内处处连续,则称 f ( z ) f(z) f(z) 在 D D D 内连续。
Ⅱ . \bold{Ⅱ}.\ \, Ⅱ. 连续性定理
定理一 【连续分部定理】 \quad 函数 f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x,y)+iv(x,y) f(z)=u(x,y)+iv(x,y) 在 z 0 = x 0 + i y 0 z_0=x_0+iy_0 z0=x0+iy0 处连续的充要条件是: u ( x , y ) u(x,y) u(x,y) 和 v ( x , y ) v(x,y) v(x,y) 在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 处连续。
定理二 【连续四则运算】 \quad 在 z 0 z_0 z0 处连续的两个函数 f ( z ) , g ( z ) f(z),g(z) f(z),g(z) 的和、差、积、商( z 0 z_0 z0 分母不为 0 0 0) 在 z 0 z_0 z0 处仍连续。
定理三 【连续复合定理】 \quad 若函数 h = g ( z ) h=g(z) h=g(z) 在 z 0 z_0 z0 处连续,函数 w = f ( h ) w=f(h) w=f(h) 在 h 0 = g ( z 0 ) h_0=g(z_0) h0=g(z0) 处连续,则复合函数 w = f [ g ( z ) ] w=f[g(z)] w=f[g(z)]在 z 0 z_0 z0 处连续。
定理三 【有界性定理】 \quad 在闭曲线或包括曲线在内的曲线段上连续的函数 f ( z ) f(z) f(z) 在曲线上有界。即存在一正数 M M M,在曲线上恒有 ∣ f ( z ) ∣ ≤ M . |f(z)|\le M. ∣f(z)∣≤M.
2.3 \quad 复变函数的导数和微分
2.3.1 \quad 复变函数的导数
Ⅰ . \bold{Ⅰ}.\ \, Ⅰ. 导数的定义
设函数 w = f ( z ) w=f(z) w=f(z) 定义于区域 D D D, z 0 z_0 z0为 D D D 中的一点,点 z 0 + Δ z z_0+\Delta z z0+Δz 不出 D D D 的范围。如果极限 lim Δ z → 0 f ( z 0 + Δ z ) − f ( z 0 ) Δ z \displaystyle{\lim_{\Delta z\to 0}{\frac{f(z_0+\Delta z)-f(z_0)}{\Delta z}}} Δz→0limΔzf(z0+Δz)−f(z0) 存在,那么就说 f ( z ) f(z) f(z) 在 z 0 z_0 z0 处 可导 ,这个极限值称为 f ( z ) f(z) f(z) 在 z 0 z_0 z0 的 导数,记作: f ′ ( z 0 ) = d w d z ∣ z = z 0 = lim Δ z → 0 f ( z 0 + Δ z ) − f ( z 0 ) Δ z . f'(z_0)=\frac{dw}{dz}|_{z=z_0}=\lim_{\Delta z\to 0}{\frac{f(z_0+\Delta z)-f(z_0)}{\Delta z}}. f′(z0)=dzdw∣z=z0=Δz→0limΔzf(z0+Δz)−f(z0).
注意:导数定义中 z 0 + Δ z → z 0 z_0+\Delta z\to z_0 z0+Δz→z0(即 Δ z → 0 \Delta z\to 0 Δz→0)的方式是任意的,所以复变函数对于导数的限制比对一元实变函数的类似限制要严格很多,并且是复变可导函数有了独特的性质和应用。
若 f ( z ) f(z) f(z) 在区域 D D D 内处处可导,则称 f ( z ) f(z) f(z) 在 D D D 内可导 。
Ⅱ . \bold{Ⅱ}.\ \, Ⅱ. 导数的性质
- 四则运算
- ( c ) ′ = 0 (c)'=0 (c)′=0
- ( z n ) ′ = n z n − 1 (z^n)'=nz^{n-1} (zn)′=nzn−1
- [ f ( z ) ± g ( z ) ] ′ = f ′ ( z ) ± g ′ ( z ) [f(z)\pm g(z)]'=f'(z)\pm g'(z) [f(z)±g(z)]′=f′(z)±g′(z)
- [ f ( z ) g ( z ) ] ′ = f ′ ( z ) g ( z ) + f ( z ) g ′ ( z ) [f(z)g(z)]'=f'(z)g(z)+f(z)g'(z) [f(z)g(z)]′=f′(z)g(z)+f(z)g′(z)
- [ f ( z ) g ( z ) ] ′ = 1 g 2 ( z ) [ g ( z ) f ′ ( z ) − f ( z ) g ′ ( z ) ] \displaystyle{[\frac{f(z)}{g(z)}]'=\frac{1}{g^2(z)}[g(z)f'(z)-f(z)g'(z)]} [g(z)f(z)]′=g2(z)1[g(z)f′(z)−f(z)g′(z)]
- f [ g ( z ) ] ′ = f ′ [ g ( z ) ] g ′ ( z ) {f[g(z)]}'=f'[g(z)]g'(z) f[g(z)]′=f′[g(z)]g′(z)
- f ′ ( z ) = 1 φ ′ ( w ) ( w = f ( z ) \displaystyle{f'(z)=\frac{1}{\varphi '(w)}}\quad(w=f(z) f′(z)=φ′(w)1(w=f(z) 与 z = φ ( w ) z=\varphi(w) z=φ(w) 互为反函数 ) ) )
- 性质
可导一定连续,连续不一定可导。
2.3.2 \quad 复变函数的微分
复变函数的微分概念在形式上和实变函数的微分概念完全相同。
设函数 w = f ( z ) w=f(z) w=f(z) 在 z 0 z_0 z0 处可导,则 Δ w = f ( z 0 + Δ z ) − f ( z 0 ) = f ′ ( z 0 ) Δ z + ρ ( Δ z ) Δ z . \Delta w=f(z_0+\Delta z)-f(z_0)=f'(z_0)\Delta z+\rho(\Delta z)\Delta z. Δw=f(z0+Δz)−f(z0)=f′(z0)Δz+ρ(Δz)Δz.其中 lim Δ z → 0 ρ ( Δ z ) = 0. \displaystyle{\lim_{\Delta z\to 0}{\rho(\Delta z)}=0.} Δz→0limρ(Δz)=0. 因此, ∣ ρ ( Δ z ) Δ z ∣ |\rho(\Delta z)\Delta z| ∣ρ(Δz)Δz∣ 是 Δ z \Delta z Δz 的高阶无穷小量,而 f ′ ( z 0 ) Δ z f'(z_0)\Delta z f′(z0)Δz 是函数 w = f ( z ) w=f(z) w=f(z) 的线性部分,称为函数 w = f ( z ) w=f(z) w=f(z) 在点 z 0 z_0 z0 处的微分,记作: d w = f ′ ( z 0 ) d z , dw=f'(z_0)dz, dw=f′(z0)dz,即 f ′ ( z 0 ) = d w d z ∣ z = z 0 . f'(z_0)=\frac{dw}{dz}|_{z=z_0}. f′(z0)=dzdw∣z=z0.
若 f ( z ) f(z) f(z) 在区域 D D D 内处处可微,则称 f ( z ) f(z) f(z) 在 D D D 内可微 。
从上述过程中可以知道,函数 w = f ( z ) w=f(z) w=f(z) 在 z 0 z_0 z0 处可导与在 z 0 z_0 z0 处可微是等价的。
2.4 \quad 解析函数
2.4.1 \quad 解析函数的定义
复变函数中,解析的概念比可导更重要。
如果函数
f
(
z
)
f(z)
f(z) 在
z
0
z_0
z0 及其邻域内处处可导,则称
f
(
z
)
f(z)
f(z) 在
z
0
z_0
z0 解析 。而函数
f
(
z
)
f(z)
f(z) 在区域
D
D
D 内每一点解析,则称
f
(
z
)
f(z)
f(z) 在
D
D
D 内解析,或称
f
(
z
)
f(z)
f(z) 是
D
D
D 内的一个 解析函数 。
如果
f
(
z
)
f(z)
f(z) 在
z
0
z_0
z0 处不解析,则称
z
0
z_0
z0 为
f
(
z
)
f(z)
f(z) 的 奇点 。
由定义我们就直接可以看出:函数在某点可导,不一定在该点解析(邻域不可导);函数在某点解析,则一定在该点可导。
而根据求导法则,我们也可以得出:
- 在区域 D D D 内解析的两个函数 f ( z ) , g ( z ) f(z),g(z) f(z),g(z) 的和、差、积、商(去除分母为 0 0 0 的点) 在 D D D 内仍解析。
- 若函数 h = g ( z ) h=g(z) h=g(z) 在 D D D 内解析,函数 w = f ( h ) w=f(h) w=f(h) 在 h ) h) h) 平面上的区域 G G G 解析。如果对 D D D 内的每一个点 z z z,函数 g ( z ) g(z) g(z) 的对应值 h h h 都属于 G G G,则复合函数 w = f [ g ( z ) ] w=f[g(z)] w=f[g(z)]在 D D D 内解析。
2.4.2 \quad 柯西-黎曼方程
Ⅰ . \bold{Ⅰ}.\ \, Ⅰ. 解析的充要条件
与实变函数的全微分类似,复变函数对于一个函数是否解析只用定义判断是不够的。从导数的定义出发,我们可以得到更好的函数解析的充要条件——柯西-黎曼方程。
函数在某点处可导的充要条件 \quad 设函数 f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x,y)+iv(x,y) f(z)=u(x,y)+iv(x,y) 定义在区域 D D D 内,则 f ( z ) f(z) f(z) 在 D D D 内一点 z = x + i y z=x+iy z=x+iy 可导的充要条件为: u ( x , y ) u(x,y) u(x,y) 与 v ( x , y ) v(x,y) v(x,y) 在点 ( x , y ) (x,y) (x,y) 可微,并且在该点满足 柯西-黎曼方程 ∂ u ∂ x = ∂ v ∂ y , ∂ u ∂ y = − ∂ v ∂ x . \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y},\qquad\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}. ∂x∂u=∂y∂v,∂y∂u=−∂x∂v.
函数解析的充要条件 \quad 函数 f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x,y)+iv(x,y) f(z)=u(x,y)+iv(x,y) 在其定义域 D D D 内解析的充要条件为: u ( x , y ) u(x,y) u(x,y) 与 v ( x , y ) v(x,y) v(x,y) 在 D D D 内可微,并且满足柯西-黎曼方程。
同时,我们也可以得到可导函数 f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x,y)+iv(x,y) f(z)=u(x,y)+iv(x,y) 在点 z = x + i y z=x+iy z=x+iy 处的导数公式: f ′ ( z ) = ∂ u ∂ x + i ∂ v ∂ x = 1 i ∂ u ∂ y + ∂ v ∂ y . f'(z)=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x}=\frac{1}{i}\frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}. f′(z)=∂x∂u+i∂x∂v=i1∂y∂u+∂y∂v.
当然,上述的讨论只是在直角坐标下的。极坐标下对于函数解析可以利用上述结论,用链式法则推出。
函数在某点处可导的充要条件(极坐标下) \quad 设函数 f ( z ) = u ( r , θ ) + i v ( r , θ ) f(z)=u(r,\theta)+iv(r,\theta) f(z)=u(r,θ)+iv(r,θ) 定义在区域 D D D 内,则 f ( z ) f(z) f(z) 在 D D D 内一点 z = r e i θ ( z ≠ 0 ) z=re^{i\theta}\ (z\ne 0) z=reiθ (z=0) 可导的充要条件为: u ( r , θ ) u(r,\theta) u(r,θ) 与 v ( r , θ ) v(r,\theta) v(r,θ) 在点 ( r , θ ) (r,\theta) (r,θ) 可微,并且在该点满足 柯西-黎曼方程 r ∂ u ∂ r = ∂ v ∂ θ , ∂ u ∂ θ = − r ∂ v ∂ r . r\frac{\partial u}{\partial r}=\frac{\partial v}{\partial \theta},\qquad \frac{\partial u}{\partial \theta}=-r\frac{\partial v}{\partial r}. r∂r∂u=∂θ∂v,∂θ∂u=−r∂r∂v.
此时 f ′ ( z ) f'(z) f′(z) 可以写为 f ′ ( z ) = e − i θ ( ∂ u ∂ r + i ∂ v ∂ r ) . f'(z)=e^{-i\theta}(\frac{\partial u}{\partial r}+i\frac{\partial v}{\partial r}). f′(z)=e−iθ(∂r∂u+i∂r∂v).
解析函数有许多好的性质,所以也相当重要。之后要学习的初等函数都是在整个复平面上解析的函数。我们把这样的函数称为 整函数 。
Ⅱ . \bold{Ⅱ}.\ \, Ⅱ. 解析函数的性质
以上的内容能够更快速地对函数是否解析作出判别。而知道了一个函数是解析函数后,也能带来一些好的性质。
- 如果 f ( z ) f(z) f(z) 在区域 D D D 是解析的,且在区域 D D D 内处处满足 f ′ ( z ) = 0 f'(z)=0 f′(z)=0,则 f ( z ) f(z) f(z) 在区域 D D D 内为一常数。
- 如果 f ( z ) = u + i v f(z)=u+iv f(z)=u+iv 为一解析函数,且 f ′ ( z ) ≠ 0 f'(z)\ne 0 f′(z)=0,那么曲线组 u ( x , y ) = c 1 u(x,y)=c_1 u(x,y)=c1 和 v ( x , y ) = c 2 v(x,y)=c_2 v(x,y)=c2 必互相正交,其中 c 1 , c 2 c_1,c_2 c1,c2 为常数。
第二条性质在上一部分中有所提及。由此可猜测,解析函数对应的映射属于共形映射。而此性质的确成立。