获取裁剪范围外的栅格数据


目标将图层B裁剪为图层A范围外的数据,也就是将B按A的范围扣除中间部分。
在这里插入图片描述
使用交集取反工具得到外裁剪范围
结果
使用裁剪
在这里插入图片描述
结果
在这里插入图片描述

### 回答1: 使用Python根据经纬度裁剪栅格数据可以通过以下步骤实现: 1. 载入需要裁剪栅格数据和经纬度信息。可以使用Python中的库(如GDAL、Rasterio)读取栅格数据文件,同时使用Python中的数值处理库(如Pandas、Numpy)加载经纬度信息。 2. 确定裁剪区域范围。根据给定的经纬度范围,将裁剪区域的边界坐标确定下来。 3. 根据裁剪区域的边界坐标,计算出栅格数据中对应的像素行列范围。通过栅格数据的分辨率和起始点坐标,可以将裁剪区域的经纬度范围转换为像素行列的范围。 4. 使用得到的像素行列范围栅格数据进行裁剪。根据像素行列范围,将栅格数据文件中的对应像素值提取出来。 5. 最后保存裁剪后的栅格数据。可以使用上述的库来保存栅格数据文件,并将裁剪后的像素值写入其中。 这样,我们就可以用Python根据经纬度裁剪栅格数据。根据不同的数据和库的选择,具体的代码实现可能会有所不同。 ### 回答2: Python可以使用GDAL(Geospatial Data Abstraction Library)库来根据经纬度裁剪栅格数据。 首先,需要安装GDAL库。可以使用pip命令来安装,命令如下: ``` pip install gdal ``` 安装完成后,可以导入GDAL库,并使用下面的代码来进行经纬度裁剪: ```python from osgeo import gdal, ogr import numpy as np # 设置要裁剪的经纬度范围 xmin, xmax, ymin, ymax = 10, 20, 30, 40 # 读取栅格数据 input_raster = gdal.Open('input.tif') band = input_raster.GetRasterBand(1) raster_array = band.ReadAsArray() # 获取栅格数据的地理转换信息 transform = input_raster.GetGeoTransform() x_origin = transform[0] y_origin = transform[3] pixel_width = transform[1] pixel_height = transform[5] # 计算裁剪窗口的像素坐标 x_start = int((xmin - x_origin) / pixel_width) x_end = int((xmax - x_origin) / pixel_width) y_start = int((y_origin - ymax) / abs(pixel_height)) y_end = int((y_origin - ymin) / abs(pixel_height)) # 裁剪栅格数据 clipped_array = raster_array[y_start:y_end, x_start:x_end] # 创建裁剪后的栅格数据文件 clipped_raster = gdal.GetDriverByName('GTiff').Create('output.tif', x_end - x_start, y_end - y_start, 1, gdal.GDT_Float32) clipped_raster.SetProjection(input_raster.GetProjection()) clipped_raster.SetGeoTransform([xmin, pixel_width, 0, ymax, 0, -pixel_height]) clipped_raster.GetRasterBand(1).WriteArray(clipped_array) # 关闭栅格数据 clipped_raster = None input_raster = None ``` 以上代码中使用了GDAL库的一些基本函数来读取和裁剪栅格数据。根据设置的经纬度范围,计算了在栅格数据中对应的像素坐标,并裁剪栅格数据。最后,将裁剪后的数据写入一个新的栅格数据文件中。 裁剪完成后,可以使用其他工具如ArcGIS或QGIS等来查看裁剪后的栅格数据文件。 ### 回答3: Python提供了多个库来处理栅格数据,常用的包括GDAL、rasterio和xarray。 首先,需要安装相应的库。可以使用pip命令安装这些库: ``` pip install gdal pip install rasterio pip install xarray ``` 接下来,需要了解要处理的栅格数据的文件格式以及具体的数据结构。通常,栅格数据以地理信息系统(GIS)文件格式存储,如GeoTIFF格式。在使用python处理栅格数据之前,需要先了解数据是如何组织和存储的。 一旦了解了数据的格式和结构,就可以开始裁剪栅格数据了。下面是一个使用rasterio库裁剪栅格数据的示例代码: ```python import rasterio def clip_raster(input_file, output_file, min_lon, max_lon, min_lat, max_lat): with rasterio.open(input_file) as src: # 获取栅格数据的空间参考信息 crs = src.crs # 定义裁剪范围 bounds = (min_lon, min_lat, max_lon, max_lat) # 调整裁剪后的栅格数据的空间参考信息 out_transform, out_width, out_height = rasterio.warp.calculate_default_transform( src.crs, crs, src.width, src.height, *bounds) # 裁剪栅格数据,并保存到输出文件中 with rasterio.open(output_file, 'w', driver='GTiff', width=out_width, height=out_height, transform=out_transform, crs=crs, count=src.count, dtype=src.dtypes[0]) as dst: rasterio.warp.reproject(src, dst, src_transform=src.transform, src_crs=src.crs, dst_transform=out_transform, dst_crs=crs, resampling=rasterio.warp.Resampling.nearest) ``` 以上代码示例使用rasterio库裁剪栅格数据。首先,使用`rasterio.open`函数打开待处理的栅格数据文件。然后,根据给定的经纬度范围计算裁剪后的输出栅格数据的空间参考信息。接下来,创建一个新的输出栅格数据文件,并设置其相应的参数,如宽度、高度、变换矩阵等。最后,使用`rasterio.warp.reproject`函数将原始栅格数据投影到新的输出栅格数据文件中,并通过`rasterio.open`打开输出文件,将裁剪后的栅格数据写入其中。 需要注意的是,以上示例仅提供了使用rasterio库裁剪栅格数据的一个基本示例。实际操作中,可能需要根据具体的数据格式和处理需求进行相应的调整和修改。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值