KMP算法:主要参考严蔚敏数据结构,最主要理解的就是一点:对于主串和子串,主串是长的,子串是短的,在主串中某个位置开始找子串匹配的起始位置;
关键的难解决以及理解的一点就是对于子串而言每一个位置上相应的会出现从最开始到该位置的一个小子串,对于该小子串而言从开始到小子串中某一位(假设有n位)和从该小子串末尾往前算(n位)相对应位置上字符是相等的,现在对于子串的每一位就是先要求得该n(0到某一小于当前小子串长度),得到了子串每一个位置上的n那么相应的就可以进行匹配了,从主串某位置起开始匹配,如果到子串某一位和主串相等,则继续下一个字符,如果不相等那么根据子串的每一位上的n就可以回溯到该n的位置,从而可以避免主串上的指针的回溯(节省了时间,以前的各种匹配比如算法导论上说的朴素匹配(实际上和严蔚敏数据结构一开始的定位算法思想一样),以及RK算法,时间复杂度都是O(m*n)(m为子串长,n主串长),但是对于KMP就是节省了主串指针回溯,为线性的O(m+n))下面是代码:
#include<iostream>
using namespace std;
//数据结构的KMP
#define N 20
int nextval[N];
void next(int *a)
{
int i=1;
int j=0;
nextval[1]=0;
while(i<=a[0])
{
if(j==0||a[i]==a[j])
{
++i;
++j;
nextval[i]=j;
}
else
{
j=nextval[j];
}
}
}
int kmp(int* a,int* c,int pos)
{
next(a);
int i=pos;
int j=1;
while(i<=a[0]&&j<=c[0])
{
if(a[i]==c[j]||j==0)
{
++i;
++j;
}else
{
j=nextval[j];
}
}
if(j>c[0])
return i-c[0];
else
return 0;
}
int main()
{
int a[11]={10,2,3,5,6,7,8,3,1,23,32};
int c[4]={3,7,8,3};
cout<<"kmp :"<<kmp(a,c,3)<<endl;
}
上面的各个数组第一个数字a[0],c[0]为哨兵,按照数据结构上定义为该数组的长度