链表

#include <iostream>
using namespace std;
/*
对于链表的话,单链表和双向链表,算法导论里面是按照双向链表来进行的,且是无序的。	
*/
/****************无哨兵的情况**********************/
struct node
{
	node* prev;
	node* next;
	int key;
	node(int k):key(k),prev(NULL),next(NULL){
	}
};

struct List
{
	node* head;
	List():head(NULL){
	}
};

void list_inset(List list,node* ln)
{//插入的话仅仅是在链表的头部插入;
	ln->next=list.head;
	if(list.head!=NULL)
	{
		list.head->prev=ln;
	}
	list.head=ln;//修改头部名字。
	ln->prev=NULL;
	
}

node* list_search(List list,int k)
{	
	node* p=list.head;
	while (p!=NULL&&p->key!=k)
	{
		p=p->next;
	}
	return p;
}

void list_delete(List list,node* ln)
{
	if (ln->prev!=NULL)//是否是首尾的
	{
		ln->prev->next=ln->next;
	}else 
	{
		list.head=ln->next;
	}
	if(ln->next!=NULL)
	{
		ln->next->prev=ln->prev;
	}
}

void print(List list)
{
	node *p=list.head;
	while (p!=NULL)
	{
		cout<<p->key<<" ";
		p=p->next;
	}
	cout<<endl;
}
/*---------------有哨兵-----------------------------*/


struct LIST
{
	node nil;
	LIST(){
		nil.prev=NULL;
		nil.next=NULL;
		nil.key=0;
	}
};

void LIST_delete(LIST lst,node *pn)
{
	  pn->next->prev=pn->prev;
	  pn->prev->next=pn->next;
}

void LIST_insert(LIST lst,node* pn)
{
	pn->next=lst.nil.next;
	lst.nil.next->prev=pn;
	pn->prev=lst.nil;
	lst.nil->next=pn;;
}

node* LIST_search(LIST lst,int key)
{
	node* p=lst.nil->next;
	while (*p!=lst.nil&&p->key!=key)
	{
		p=p->next;
	}
	return p;
}


int main()
{
	List list;
	node* p1=new node(1);
	node* p2=new node(2);
	node* p3=new node(3);
	list_inset(list,p1);
	list_inset(list,p2);
	list_inset(list,p3);
	print(list);
	cout<<"-------------"<<endl;
	cout<<list_search(list,2)<<endl;
	cout<<"-------------"<<endl;
	list_delete(list,p2);
	print(list);
	cout<<"finished !"<<endl;
	return 0;
	
}

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值