/* 整齐打印:问题描述: n个单词,对应的长度是<l1,l2,...,ln>,每一行最多是M个字符,如果对于一行来说的话,从i开始到j位置终止的话(i<j),单词之间只留一个空格,则 对于每一行来说的话会在行末尾留下的最多的空格是e[i][j]=M-j+i-(k从i到j求和)lk;但是如果是最后一行的话,就不算进去行末尾空格的数量,相应的我们需要的代价是 在行末尾的空格的次数的立方后的求和之值是最小。 求解思路:由于需要的是求解代价最小,我们先把代价描述出来,我们定义一行行末尾造成的代价l[i][j],假设这个行起止坐标为i,j。相应的就可以知道的是对于这 一行的话存在下面情况:(1)如果j=n,表示的是最后一行,代价是0,因为上面的情况的话意思就是到达最后一行;(2)如果是i>j,这种情况下的话由于开销是可以为负的,我们为 了便利,令它为无穷大;(3)其他的情况的话就是(e[i][j])^3 上面是对于每一行的代价的估算,那么我们如果是对于整个单词数组进行规划的话,结果应该是这样的:我们定义c[j]为表示的是从1-j的最小的开销即最小的空格开销 那么就可以得到这样的结果:(1)当j=0的时候,必定开销是0;(2)当j非0的时候,对应的就是min(c[i-1]+l[i][j]);我们认为的是i-j可以组成的是一个行; 此外为了更好的标记最后输出的行的分化,那么的话我们定义一个数组p[n]进行记录行的分化的位置,具体分化思路如下:假设如上面(2)所示的话,是从i位置开始进入新 的一行的话,我们令p[j]=i;对于再往上的情况是p[p[j]],如此而已; */ #include <iostream> using namespace std; #define N 10 struct Cost { int num; int M; int e[N][N]; int lc[N][N]; int p[N]; int c[N]; int l[N]; Cost() { M=0; cout<<"input the num of matrix ..."<<endl; cin>>num; for (int i=0;i<N;++i) { for (int j=0;j<N;++j) { e[i][j]=0; lc[i][j]=0; } p[i]=0; c[i]=0; l[i]=0; } } void init(); void neaty(); int print(int); }; void Cost::init() { cin>>M; for (int i=1;i<=num;++i)//确保num和N的数量关系 { cin>>l[i]; } } void Cost::neaty() { int i,j; for (i=1;i<=num;++i) { e[i][i]=M-l[i]; for (j=i+1;j<=num;++j) { e[i][j]=e[i][j-1]-1-l[j]; } }//计算下初始的赋值 for (i=1;i<=num;++i) { for (j=i;j<=num;++j) { if(e[i][j]<0) { lc[i][j]=0xfffffff; }else if (j==num&&e[i][j]>=0) { lc[i][j]=0; }else { lc[i][j]=(e[i][j])*(e[i][j])*(e[i][j]); } } }//计算出行开销 for (j=1;j<=num;++j) { c[j]=0xfffffff; for (i=1;i<=j;++i) { if (c[j]>c[i-1]+lc[i][j]) { c[j]=c[i-1]+lc[i][j]; p[j]=i; } } } } int Cost::print(int j) { int k; int i=p[j]; if (i==1) { k=1; }else k=print(i-1)+1; cout<<"line id:"<<k<<" "<<i<<" "<<j<<" "; return k; } int main() { Cost cst; cst.init(); cst.neaty(); cst.print(cst.num); cout<<endl; for (int i=1;i<=cst.num;++i) { cout<<cst.p[i]<<" "; } cout<<endl; return 0; }
十五章整齐打印
最新推荐文章于 2019-07-30 21:49:01 发布