找硬币(dp)

/*
总和为n分的硬币而言,具有k种的找零的硬币(d1,d2,,...,dk),希望找到一种算法可以在O(kn)时间内找到
具体思路:使用dp的思想,我们假设是对于总和是j分的硬币,对应的数量是c[j],那么的话,当j是小于等于0的时候的话就是c[j]=0;
j是非0的时候,相应的可以使用一种动态规划的思想,获取得到一种最优子结构,第一次找到di类钱找零,下一次进行的话就是最小的c[j]
所以对应的式子就是c[j]=1+min(c[j-di])(1<=i<=n)
*/
#include <iostream>
using namespace std;
#define N 10
struct Num
{
	int num;//一共需要找零的钱总和
	int k;//多少种零钱
	int d[N+1];
	int c[N+1];
	int daemo[N+1];
	Num(int n,int key):num(n),k(key)
	{
		for (int i=0;i<=num;++i)
		{
			d[i]=0;
			c[i]=0xfffffff;
			daemo[i]=0;
		}
		c[0]=0;
	}
	void init();
	void change();
	void print(int);
};

void Num::init()
{
	for (int i=1;i<=k;++i)
	{
		cin>>d[i];
	}
}

void Num::change()
{
	for (int j=1;j<=num;++j)
	{
		for (int i=1;i<=k;++i)
		{
			if (j>=d[i]&&c[j]>1+c[j-d[i]])
			{
				c[j]=1+c[j-d[i]];
				daemo[j]=d[i];
			}
		}
	}
}

void Num::print(int j)
{
	if(j>0)
	{
		cout<<daemo[j]<<" ";
		print(j-daemo[j]);
	}
}

int main()
{
	Num nm(10,3);
	nm.init();
	nm.change();
	nm.print(nm.num);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值