【串和序列处理 7】LIS 最长递增子序列

LIS: 给定一个字符串序列S={x0,x1,x2,...,x(n-1)},找出其中的最长子序列,而且这个序列必须递增存在。

 

下面给出解决这个问题的几种方法:

 

(1) 转化为LCS问题

 

      思想: 将原序列S递增排序成序列T,然后利用动态规划算法取得S与T的公共最长子序列。具体算法详见《LCS最长公共子序列 》。

 

      效率: 这个方法排序最好的是时间复杂度是O(n*logn),动态规划解决LCS的时间复杂度是O(n^2)。因此总体时间复杂度是O(n*logn)+O(n^2)=O(n^2) 级别。


(2) 分治策略

 

      思想: 假设f(i)表示S中 x0 ... xi 子串的最长递增子序列的长度。则有如下递归:找到所有在xi之前,且值小于xi 的元素xj,即j<i 且 xj<xi。如果这样的元素存在,那么所有的xj 都有一个x0  ... xj 子串的最长递增子序列,其长度为f(j)。把其中最大的f(j)选出来,则

                                        f(i)=Max(f(j))+1.  其中{j | j<i 且xj<xi}

如果这样的j不存在,则xi自身构成一个长度为1的递增子序列。

 

该算法Java源代码如下:

package net.hr.algorithm.string;
/**
 * 最长递增子序列 LIS
 * @author heartraid
 */
public class LIS {

	char[] chars=null;
	
	public LIS(String str){
		chars=str.toCharArray();
	}
	
	public void getLIS(){
	     
		int[] f=new int[chars.length]; //用于存放f(i)值
		String[] sequence=new String[chars.length];
		f[0]=1; //以第x1为末元素的最长递增子序列长度为1

		for(int i=1;i<chars.length;i++)//循环n-1次
		{
			sequence[i]=""+chars[i];
			f[i]=1;//f[i]的最小值为1;
			String temp="";
			for(int j=0;j<i;j++)//循环i 次
			{
				
				if(chars[j]<chars[i]&&f[j]>f[i]-1){
					temp=temp+chars[j];
					f[i]=f[j]+1;//更新f[i]的值。
				}
				
			}
			sequence[i]=temp+sequence[i];
		}
		//打印结果
		int maxLength=0;
		int maxSize=0;
		for(int k=0;k<chars.length;k++){
			if(maxLength<f[k]){
				maxLength=f[k];
				maxSize=k;
			}
		}
		System.out.println("最大递增子序列为:"+sequence[maxSize]+"(length="+maxLength+")"); 
	}

	public static void main(String[] args) {
		LIS lis=new LIS("ijabcsrewesdsdewg");
		lis.getLIS();
		
	}

}
 

     效率: 算法时间复杂度为O(n^2)级别。

 

 

(3) 动态规划算法

 

      实际上这是一道很典型的动态规划问题。我们假设a[0]....a[i-1] 有一个最长递增子序列,其长度f(i-1)<=i, 且该最长递增子序列的最后一个元素为b。

      那么对于a[0].... a[i] 而言,如果b<a[i],那么f(i)=f(i-1)+1,且最长递增子序列的最后一个元素变成了a[i]。如果b>=a[i],那么f(i)=f(i-1)。

      上面的过程有一个难点:如果a[0]....a[i-1] 有多个最大长度为f(i-1)的递增子序列怎么办?需不需要所有长度等于f(i-1)的递增子序列的最后一个元素b0...bi全部存储起来,再一一和a[i]比较大小呢?如果是这样,那么整个算法与上面的分治策略将没有什么不同了?

      事实上,并不需要怎么做。我们举个例子: a[]={1、2、5、3、7}

      a[0] ... a[3] 的最大递增子序列有两个{1,2,5}和{1,2,3},当增加a[4]的时候,如果a[4]>5,则两个子序列都需要增加a[4];如果a[4]>3,则{1,2,3}+a[4]将必定成为新的最大子序列,而{1,2,5}不确定。因此我们看出,只要保存所有最大序列的最小的末尾元素即可。

 

      因此我们设计一个如下的算法:其中b[k]用来表示最大子序列长度为k时的最小末尾元素。

int LIS(){
   b[1]=a[0];
   for(int i=1;k=1;i<n;i++){
      if(a[i]>=b[k]) b[++k]=a[i];
      else b[binary(i,k)]=a[i];
   }
   return k;
}

int binary(int i, int k){
   if(a[i]<b[1]) return 1;
   for(int h=1,j=k;h!=j-1;){
      if(b[k=(h+j)/2]<=a[i]) h=k;
      else j=k;  
   }
   return j;
} 

   该算法的时间复杂为O(N*logN)。

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值