https://leetcode-cn.com/problems/longest-palindromic-substring/submissions/
给你一个字符串 s
,找到 s
中最长的回文子串。
一、动态规划的解法:
1. 确定DP数组和下标的含义:
dp[i][j] 表示 区间范围 [i,j](左闭右闭)的字串是否是回文串,如果是,则 dp[i][j] 为 true;反之,为 false
2. 确定递推公式:
如果 s[i] != s[j],dp[i][j] 为 false
如果 s[i] == s[j],则有三种情况:
当 下标i 与 下标 j 相同,则 s[i] 和 s[j] 是同一个字符,例如 a,这是回文串
当 下标i 与 下标 j 相差为 1,例如 aa,也是回文串
当 下标i 与 下标 j 相差大于 1 时,例如 abcba,这时候就看bcb 是否是回文串,bcb 的区间是 [i + 1, j - 1]
如果 dp[i][j] 是回文串,并且长度大于结果长度:我们就更新结果
3. DP数组初始化:dp数组 全为 false 即可
4. 确定遍历顺序:外层逆序遍历,内层正序遍历 [i, N - 1]
,即从右下角往左上方遍历
function getMaxArray(s){
let dp=new Array()
let result=''
for(let i=0;i<s.length;i++){
dp[i]= new Array(s.length).fill(false)
}
let len=s.length
for(let i=len-1;i>=0;i--){
for(let j=i;j<len;j++){
if( ( j-i<=1 || dp[i+1][j-1] ) && s.charAt(i) === s.charAt(j) ){
dp[i][j]=true
}
if(dp[i][j] && (j-i+1)>result.length ){
result=s.substring(i,j+1)
}
}
}
return result
}
二、暴力破解:
//判断字符串是否是回文串
function isValid(str){
let start=0
let end=str.length-1
while (end>0 && start <str.length && start<=end) {
if(str.charAt(start)!==str.charAt(end)){
return false
}
start++
end--
}
return true
}
function getMax(s){
if(s.length===1){
return s
}
let result=s.charAt(0) //初始默认为第一个字母,单个字母也算回文
for(let i=0;i<str.length;i++){
let j=i+1
while(j<str.length){
let tempStr=str.substring(i,j+1)// 注意:substring截取的片段不包含end,所以要end+1
if(isValid(tempStr) && tempStr.length>result.length){
result=tempStr
}
j++
}
}
return result
}