PriorityQueue优先队列源码解析
一、什么是PriorityQueue优先队列?
PriorityQueue 一个基于优先级的无界优先级队列。优先级队列的元素按照其自然顺序进行排序,或者根据构造队列时提供的 Comparator 进行排序,具体取决于所使用的构造方法。该队列不允许使用 null 元素也不允许插入不可比较的对象(没有实现Comparable接口的对象)。
PriorityQueue 队列的头指排序规则最小那个元素。如果多个元素都是最小值则随机选一个。
PriorityQueue 是一个无界队列,但是初始的容量(实际是一个Object[]),随着不断向优先级队列添加元素,其容量会自动扩容,无需指定容量增加策略的细节。
二、实现原理
PriorityQueue是优先级队列,它首先实现了队列接口(Queue),与LinkedList类似,它的队列长度也没有限制,与一般队列的区别是,它有优先级的概念,每个元素都有优先级,队头的元素永远都是优先级最高的。
PriorityQueue内部是用堆实现的,内部元素不是完全有序的,不过,逐个出队会得到有序的输出。
虽然名字叫优先级队列,但也可以将PriorityQueue看做是一种比较通用的实现了堆的性质的数据结构,可以用PriorityQueue来解决适合用堆解决的问题
三、构造方法解析
add()方法
public boolean add(E e) {
return offer(e);
}
public boolean offer(E e) {
if (e == null)
throw new NullPointerException();
//数据不能为null
modCount++;
int i = size;
if (i >= queue.length)
grow(i + 1);
size = i + 1;
if (i == 0)
//当前插入的是第一个元素
queue[0] = e;
else
siftUp(i, e);
return true;
}
扩容操作
private void grow(int minCapacity) {
int oldCapacity = queue.length;
// Double size if small; else grow by 50%
int newCapacity = oldCapacity + ((oldCapacity < 64) ?
(oldCapacity + 2) :
(oldCapacity >> 1));
//当容量小于64按照2倍的扩容,否则1.5倍的扩容
// overflow-conscious code
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
queue = Arrays.copyOf(queue, newCapacity);
}
//新元素(x)不断与父节点(e)比较,如果新元素(x)大于等于父节点(e),则已满足堆的性质,退出循环,k就是新元素最终的位置;
//否则,将父节点往下移(queue[k]=e),继续向上寻找(k=parent)
private void siftUp(int k, E x) {
if (comparator != null)
//自定义实现比较器类
siftUpUsingComparator(k, x);
else
siftUpComparable(k, x);
}
@SuppressWarnings("unchecked")
private void siftUpComparable(int k, E x) {
Comparable<? super E> key = (Comparable<? super E>) x;
//k表示size,即最后的位置
while (k > 0) {
//通过k找到父节点
int parent = (k - 1) >>> 1;
Object e = queue[parent];
if (key.compareTo((E) e) >= 0)
//key大于e,即新节点大于父节点
//满足小根堆的条件 直接跳出
break;
//若孩子节点元素值小于父节点的值,将父节点的值与新插入元素值交换
queue[k] = e;
k = parent;
}
queue[k] = key;
}
@SuppressWarnings("unchecked")
private void siftUpUsingComparator(int k, E x) {
while (k > 0) {
int parent = (k - 1) >>> 1;
Object e = queue[parent];
if (comparator.compare(x, (E) e) >= 0)
break;
queue[k] = e;
k = parent;
}
queue[k] = x;
}
peek()方法
public E peek() {
//获取堆顶元素,不删除
return (size == 0) ? null : (E) queue[0];
}
remove()方法 删除堆顶元素
public E poll() {
if (size == 0)
return null;
int s = --size;
modCount++;
//获取堆顶元素,即要删除元素
E result = (E) queue[0];
//获取队列最后一个元素,要插入堆顶位置
E x = (E) queue[s];
queue[s] = null;
if (s != 0)
siftDown(0, x);
return result;
}
private void siftDown(int k, E x) {
if (comparator != null)
siftDownUsingComparator(k, x);
else
siftDownComparable(k, x);
}
@SuppressWarnings("unchecked")
private void siftDownComparable(int k, E x) {
Comparable<? super E> key = (Comparable<? super E>)x;
//获取到堆大小容量一半的位置
int half = size >>> 1; // loop while a non-leaf
//从根节点调整到half位置就结束
while (k < half) {
//找到当前节点的左孩子
int child = (k << 1) + 1; // assume left child is least
Object c = queue[child];
//右孩子
int right = child + 1;
//找到K节点的左右孩子中最小的孩子节点
if (right < size &&
((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
c = queue[child = right];
if (key.compareTo((E) c) <= 0)
break;
queue[k] = c;//上移
k = child;//从新的节点出发继续寻找
}
queue[k] = key;
}
@SuppressWarnings("unchecked")
private void siftDownUsingComparator(int k, E x) {
int half = size >>> 1;
while (k < half) {
int child = (k << 1) + 1;
Object c = queue[child];
int right = child + 1;
if (right < size &&
comparator.compare((E) c, (E) queue[right]) > 0)
c = queue[child = right];
if (comparator.compare(x, (E) c) <= 0)
break;
queue[k] = c;
k = child;
}
queue[k] = x;
}
四、基本特点
(1)底层使用可变数组Object[ ] queue,数组容量按需增长
(2)它是一个比较标准的队列,不是绝对标准,因为它不是严格的先进先出,内部按队列元素的大小进行了重新排序(定制排序、自然排序),所以要放入集合中的元素必须实现Comparable接口。
(3)不能存储null
(4)默认数组初始长度是11,也可以指定初始容量(也是实际会分配的容量)
(5)线程不安全。可以使用java.util.concurrent.PriorityBlockingQueue(线程安全)
(6)当遍历一个 PriorityQueue 时,没有任何顺序保证
(7)通过判断如果需要扩容,先扩容,再插入。【数组容量满了之后才会触发扩容】
(8)二叉堆【根元素最小】
(9)默认数组最大长度是MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8
五、应用实例
优先队列主要应用于大数据查询之TopK的问题。
eg:获取1000000个数据,数据范围(0~1000),求出出现次数最多的10组数据
public static void main(String[] args) {
topMin();
}
public static void topMin(){
//将100000个数据存储到ArrayList中
ArrayList<Integer> list = new ArrayList<>(100000);
Random random = new Random();
for (int i = 0; i < 100000; i++) {
list.add(random.nextInt(1001));
}
//统计出现次数HashMap key:数字 value:次数
HashMap<Integer, Integer> hashMap = new HashMap<>();
Iterator<Integer> iterator = list.iterator();
while (iterator.hasNext()){
Integer key = iterator.next();
if (hashMap.containsKey(key)){
hashMap.put(key,hashMap.get(key)+1);
}
else {
hashMap.put(key,1);
}
}
//获取出现次数最多的10组数据,优先级队列Map.Entry
Comparator<Map.Entry<Integer, Integer>> comparator = new Comparator<Map.Entry<Integer, Integer>>() {
//比较map中的value
@Override
public int compare(Map.Entry<Integer, Integer> o1, Map.Entry<Integer, Integer> o2)
{
//
return o1.getValue()-o2.getValue();
}
@Override
public boolean equals(Object obj) {
return false;
}
};
PriorityQueue<Map.Entry<Integer, Integer>> priorityQueue = new PriorityQueue<>(10, comparator);
Iterator<Map.Entry<Integer, Integer>> iterator1 = hashMap.entrySet().iterator();
while (iterator1.hasNext()){
Map.Entry<Integer, Integer> entry = iterator1.next();
if (priorityQueue.size()<10){
//优先级队列中数量小于10,直接插入entry中
priorityQueue.add(entry);
}
else {
//大于10就让value与栈顶元素相比较
Integer value = entry.getValue();
if (priorityQueue.peek().getValue()<value){
priorityQueue.remove();
priorityQueue.add(entry);
}
}
Iterator<Map.Entry<Integer, Integer>> iterator2 = priorityQueue.iterator();
while (iterator2.hasNext()){
Map.Entry<Integer, Integer> next = iterator2.next();
System.out.println(next.getKey()+"出现了"+next.getValue()+"出现次数");
}
System.out.println();
}
}