归并排序

归并排序是利用”归并”技术来进行排序。归并是指将若干个已排序的子文件合并成一个有序的文件。常见的归并排序有两路归并排序(Merge Sort),多相归并排序(Polyphase Merge Sort),Strand排序(Strand Sort)。下面介绍第一种:

两路归并排序

最差时间复杂度:O(nlogn)
平均时间复杂度:O(nlogn)
最差空间复杂度:O(n)
稳定性:稳定

两路归并排序(Merge Sort),也就是我们常说的归并排序,也叫合并排序。它是建立在归并操作上的一种有效的排序算法,归并操作即将两个已经排序的序列合并成一个序列的操作。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

归并操作的基本步骤如下:

1.申请两个与已经排序序列相同大小的空间,并将两个序列拷贝其中;
2.设定最初位置分别为两个已经拷贝排序序列的起始位置,比较两个序列元素的大小,依次选择相对小的元素放到原始序列;
3.重复2直到某一拷贝序列全部放入原始序列,将另一个序列剩下的所有元素直接复制到原始序列尾。

设归并排序的当前区间是R[low..high],分治法的三个步骤是:
1.分解:将当前区间一分为二,即求分裂点
2.求解:递归地对两个子区间R[low..mid]和R[mid+1..high]进行归并排序;
3.组合:将已排序的两个子区间R[low..mid]和R[mid+1..high]归并为一个有序的区间R[low..high]。
递归的终结条件:子区间长度为1(一个记录自然有序)。

算法示意图:
这里写图片描述

代码:

void Merge(int *array, int low, int mid, int up)
{
    int n1 = mid-low+1;
    int n2 = up-mid;
    int *L = new int[n1+1];
    int *R = new int[n2+1];
    int i, j, k;

    for (i=0; i<n1; i++){
        L[i] = array[low+i];
    }
    for (j=0; j<n2; j++){
        R[j] = array[mid+j+1];
    }
    L[n1] = 0x7fffffff;
    R[n2] = 0x7fffffff;
    for (i=0, j=0, k=low; k<=up; k++)
    {
        if (L[i]<=R[j])
        {
            array[k] = L[i];
            i++;
        }
        else
        {
            array[k] = R[j];
            j++;
        }
    }

    delete []L;
    delete []R;
}

void MergeSort(int *array, int low, int up)
{
    if (low < up)
    {
        int mid = (low+up)/2;
        MergeSort(array, low, mid);
        MergeSort(array, mid+1, up);
        Merge(array, low, mid, up);
    }
}

int main()
{
    int array[] = {2,8,7,1,0,10,3};
    int len = sizeof(array);
    MergeSort(array, 0, len-1);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值