归并排序是利用”归并”技术来进行排序。归并是指将若干个已排序的子文件合并成一个有序的文件。常见的归并排序有两路归并排序(Merge Sort),多相归并排序(Polyphase Merge Sort),Strand排序(Strand Sort)。下面介绍第一种:
两路归并排序
最差时间复杂度:O(nlogn)
平均时间复杂度:O(nlogn)
最差空间复杂度:O(n)
稳定性:稳定
两路归并排序(Merge Sort),也就是我们常说的归并排序,也叫合并排序。它是建立在归并操作上的一种有效的排序算法,归并操作即将两个已经排序的序列合并成一个序列的操作。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
归并操作的基本步骤如下:
1.申请两个与已经排序序列相同大小的空间,并将两个序列拷贝其中;
2.设定最初位置分别为两个已经拷贝排序序列的起始位置,比较两个序列元素的大小,依次选择相对小的元素放到原始序列;
3.重复2直到某一拷贝序列全部放入原始序列,将另一个序列剩下的所有元素直接复制到原始序列尾。
设归并排序的当前区间是R[low..high],分治法的三个步骤是:
1.分解:将当前区间一分为二,即求分裂点
2.求解:递归地对两个子区间R[low..mid]和R[mid+1..high]进行归并排序;
3.组合:将已排序的两个子区间R[low..mid]和R[mid+1..high]归并为一个有序的区间R[low..high]。
递归的终结条件:子区间长度为1(一个记录自然有序)。
算法示意图:
代码:
void Merge(int *array, int low, int mid, int up)
{
int n1 = mid-low+1;
int n2 = up-mid;
int *L = new int[n1+1];
int *R = new int[n2+1];
int i, j, k;
for (i=0; i<n1; i++){
L[i] = array[low+i];
}
for (j=0; j<n2; j++){
R[j] = array[mid+j+1];
}
L[n1] = 0x7fffffff;
R[n2] = 0x7fffffff;
for (i=0, j=0, k=low; k<=up; k++)
{
if (L[i]<=R[j])
{
array[k] = L[i];
i++;
}
else
{
array[k] = R[j];
j++;
}
}
delete []L;
delete []R;
}
void MergeSort(int *array, int low, int up)
{
if (low < up)
{
int mid = (low+up)/2;
MergeSort(array, low, mid);
MergeSort(array, mid+1, up);
Merge(array, low, mid, up);
}
}
int main()
{
int array[] = {2,8,7,1,0,10,3};
int len = sizeof(array);
MergeSort(array, 0, len-1);
return 0;
}