基于百炼平台构建智能体应用——十分钟构造能主动提问的导购智能体

基于百炼平台构建智能体应用

前言

大模型服务平台百炼提供了完善的智能体应用构建功能,包括智能体应用,工作流应用,智能体编排应用等多种应用构建模式,支持在百炼控制台低代码或0代码的方式创建应用,也支持API调用。可以基于业务需求和数据,快速在百炼平台构建一个专属应用,同时部署到不同的终端。本文通过一个简单的RAG应用,介绍如何将百炼应用部署到钉钉的流程。本章将以百炼Multi-Agent架构为核心,展示如何快速部署一个多智能体的导购助手体系。

本节目标

学完本节课程后,你将能够:

→ 了解如何通过百炼的Assistant API 构建一个 Multi-Agent 架构的大模型应用实现智能导购

1、方案概览

当您去电器商城购买冰箱,您首先向前台发起询问哪里可以买到冰箱,前台将您带到了冰箱商店的位置;在冰箱商店,导购员向您询问想要什么参数的冰箱,并根据这些参数将合适的冰箱推荐给您。

类似的,您可以通过百炼的Assistant API 构建一个 Multi-Agent 架构的大模型应用实现智能导购,其中:

  • 规划助理(Router Agent)是该应用的核心,它会参考对话历史与用户的输入,选择合适的助理进行回复。
  • 手机导购、冰箱导购与电视导购接收规划助理的指派信息,主动向顾客询问商品参数偏好;在参数收集完成后,系统可以通过百炼应用进行智能商品检索,也可以使用SQL查询商品数据库,然后输出推荐的商品。
  • 用户与各助理的对话历史可以为每个助理的决策提供参考依据。

img

2、搭建智能导购网站

您可以通过我们提前准备好的函数计算应用模板,快速搭建并测试一个集成了智能导购的网站。详细步骤如下:

2.1 创建函数计算应用

您可以访问我们准备好的函数计算应用模板,快速搭建一个集成智能导购的网站。智能导购可以通过多轮交互,收集顾客心仪的商品信息,默认商品包含手机、电视与冰箱。参考下图选择直接部署并填写您的 API Key,您可以访问我的API-KEY来获取您的API Key。其它表单项保持默认,单击页面左下角的创建并部署默认环境,等待项目部署完成即可(预计耗时 1 分钟)。

温馨提示:

百炼应用ID(可选): 如果您计划使用百炼应用进行商品智能检索,请在创建应用时提供百炼应用ID,获取方式请参考创建百炼商品检索应用并集成到智能导购中(可选)。 如果您计划使用商品数据库检索,此项可留空。 如果您决定后期集成百炼应用,可在创建函数计算应用后,通过环境变量配置方式添加您的百炼应用ID。

img

2.2 访问网站

在函数计算应用部署完成后,您可以在跳转后的页面的环境信息中找到示例网站的访问域名,单击即可查看,确认示例网站已经部署成功。

img

2.3 验证智能导购效果

智能导购会主动询问并收集需要的商品参数信息;收集完成后打印出参数信息。

img

**温馨提示:**在导购收集到顾客的商品参数偏好后,您可以通过查询商品数据库来返回商品。如果您想通过百炼应用来进行智能商品检索,请参考创建百炼商品检索应用并集成到智能导购中(可选)

3、关键代码

上述示例程序中用于意图识别的模块是规划助理(Router Agent)。经过规划助理的意图分类后,用户的问题会被传递给对应的手机导购 Agent、电视导购 Agent 或冰箱导购 Agent。

3.1 规划助理
ROUTER_AGENT_INSTRUCTION = """你是一个问题分类器
请根结合用户的提问和上下文判断用户是希望了解的商品具体类型。

注意,你的输出结果只能是下面列表中的某一个,不能包含任何其他信息:
- 手机(用户在当前输入中提到要买手机,或正在进行手机参数的收集)
- 电视机(用户在当前输入中提到要买电视机,或正在进行电视参数的收集)
- 冰箱(用户在当前输入中提到要买冰箱,或正在进行冰箱参数的收集)
- 其他(比如用户要买非上述三个产品、用户要买不止一个产品等情况)

输出示例:
手机
"""
router_agent = Assistants.create(
    model="qwen-plus",
    name='引导员,路由器',
    description='你是一个商城的引导员,负责将用户问题路由到不同的导购员。',
    instructions=ROUTER_AGENT_INSTRUCTION
)
3.2 手机导购助理
MOBILEPHONE_GUIDE_AGENT_INSTRUCTION = """你是负责给顾客推荐手机的智能导购员。

你需要按照下文中【手机的参数列表】中的顺序来主动询问用户需要什么参数的手机,一次只能问一个参数,不要对一个参数进行重复提问。
如果用户告诉了你这个参数值,你要继续询问剩余的参数。
如果用户询问这个参数的概念,你要用你的专业知识为他解答,并继续向他询问需要哪个参数。
如果用户有提到不需要继续购买商品,请输出:感谢光临,期待下次为您服务。

【手机的参数列表】
1.使用场景:【游戏、拍照、看电影】
2.屏幕尺寸:【6.4英寸、6.6英寸、6.8英寸、7.9英寸折叠屏】
3.RAM空间+存储空间:【8GB+128GB、8GB+256GB、12GB+128GB、12GB+256GB】

如果【参数列表】中的参数都已收集完毕,你要问他:“请问您是否确定购买?”,并同时将顾客选择的参数信息输出,如:用于拍照|8GB+128GB|6.6英寸。问他是否确定需要这个参数的手机。如果顾客决定不购买,要问他需要调整哪些参数。

如果顾客确定这个参数符合要求,你要按照以下格式输出:
【使用场景:拍照,屏幕尺寸:6.8英寸,存储空间:128GB,RAM空间:8GB】。请你只输出这个格式的内容,不要输出其它信息。"""

mobilephone_guide_agent = Assistants.create(
    model="qwen-max",
    name='手机导购',
    description='你是一个手机导购,你需要询问顾客想要什么参数的手机。',
    instructions=MOBILEPHONE_GUIDE_AGENT_INSTRUCTION
)
3.3 电视导购助理
TV_GUIDE_AGENT_INSTRUCTION = """你是负责给顾客推荐电视的智能导购员。

你需要按照下文中【电视的参数列表】中的顺序来主动询问用户需要什么参数的电视,一次只能问一个参数,不要对一个参数进行重复提问。
如果用户告诉了你这个参数值,你要继续询问剩余的参数。
如果用户询问这个参数的概念,你要用你的专业知识为他解答,并继续向他询问需要哪个参数。
如果用户有提到不需要继续购买商品,请输出:感谢光临,期待下次为您服务。

【电视的参数列表】
1.屏幕尺寸:【50英寸、70英寸、80英寸】
2.刷新率:【60Hz、120Hz、240Hz】
3.分辨率:【1080P、2K、4K】

如果【电视的参数列表】中的参数都已收集完毕,你要问他:“请问您是否确定购买?”,并同时将顾客选择的参数信息输出,如:50英寸|120Hz|1080P。问他是否确定需要这个参数的电视。如果顾客决定不购买,要问他需要调整哪些参数。

如果顾客确定这个参数符合要求,你要按照以下格式输出:
【屏幕尺寸:50英寸,刷新率:120Hz,分辨率:1080P】。请你只输出这个格式的内容,不要输出其它信息。"""

tv_guide_agent = Assistants.create(
    model="qwen-max",
    name='电视导购',
    description='你是一个电视导购,你需要询问顾客想要什么参数的电视。',
    instructions=TV_GUIDE_AGENT_INSTRUCTION
)
3.4 选择不同的 Agent 进行回复
agent_map = {
    "意图分类": router_agent.id,
    "手机": mobilephone_guide_agent.id,
    "冰箱": fridge_guide_agent.id,
    "电视机": tv_guide_agent.id
}

def chat(input_prompt, thread_id):
    # 首先根据用户问题及 thread 中存储的历史对话识别用户意图
    router_agent_response = get_agent_response(agent_name="意图分类", input_prompt=input_prompt, thread_id=thread_id)
    classification_result = parse_streaming_response(router_agent_response)

    response_json = {
        "content": "",
    }
    # 如果分类识别为其他时,引导用户调整提问方式
    if classification_result == "其他":
        return_json["content"] = "不好意思,我没有理解您的问题,能换个表述方式么?"
        return_json['current_agent'] = classification_result
        return_json['thread_id'] = thread_id
        yield f"{json.dumps(return_json)}\n\n"
    # 如果分类是手机、电视机或冰箱时,让对应的 Agent 进行回复
    else:
      	agent_response = get_agent_response(agent_name=classification_result, input_prompt=input_prompt, thread_id=thread_id)
        for chunk in agent_response:
            response_json["content"] = chunk
            response_json['current_agent'] = classification_result
            response_json['thread_id'] = thread_id
            yield f"{json.dumps(response_json)}\n\n"

4、创建百炼商品检索应用并集成到智能导购中(可选)

在收集完客户的购买需求后,您可以借助这些需求描述进行商品检索和推荐。(在您的实际生产环境中,也可以替换为通过您的已有数据库检索。)

4.1 步骤一:创建百炼商品检索应用
4.1.1 创建知识库

百炼支持您上传表格文件到知识库中。本案例的导购场景包含三种商品信息手机信息.xlsx电视信息.xlsx冰箱信息.xlsx。此处以手机商品为例,向您介绍在百炼创建基于表格数据的知识库过程。

4.1.2 新增数据表

单击新增数据表数据表名称设为:百炼手机;设置列名为:系列、屏幕尺寸、像素值、存储空间、RAM大小、电池续航、价格**。**

电视数据集对应列名为:品牌、屏幕尺寸、刷新率、分辨率、价格(元);冰箱数据集对应列名为:系列、容量、冷却方式、高度、能耗、价格(元)。

4.1.3 导入数据

在数据表管理界面找到百炼手机数据表,单击导入数据。将手机信息.xlsx作为知识库文件。您可以在导入数据界面进行上传。

截屏2024-11-03 20.01.41

4.1.4 创建知识库

单击创建知识库,将知识库名称改为百炼手机知识库数据类型选择结构化数据,其它参数保持默认即可,单击下一步。选中您创建的数据表,单击导入完成

截屏2024-11-03 20.00.22

4.1.5 创建电视与冰箱数据库

重复以上步骤,创建百炼电视知识库百炼冰箱知识库

4.1.6 创建百炼应用
4.1.6.1 新增应用

访问我的应用,单击新增应用。在应用管理界面,修改应用名称为:商品信息存储bot;选择模型为通义千问-Plus,模型其它参数保持默认即可;打开知识检索增强开关,选择知识库百炼手机知识库、百炼电视知识库百炼冰箱知识库检索片段数设为10。在Prompt框中进行修改,修改后的Prompt为:

# 知识库
请记住以下材料,他们可能对回答问题有帮助。
${documents}
请你选出最相似的三个产品。
4.1.6.2 获取百炼应用ID

单击右上角的发布,即可通过API调用商品信息存储bot。在应用列表中可以查看商品信息存储bot的百炼应用 ID。

img

4.2 步骤二:将商品检索应用集成到智能导购中
4.2.1 修改函数计算应用的代码与环境变量

回到函数计算应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页

  1. 在代码视图中找到agents.py文件并进行修改。将以下内容取消注释:

img

  1. 如果您在创建函数计算应用时没有填入百炼应用ID,可以在函数详情页单击编辑环境变量,在BAILIAN_APP_ID处填入您的百炼应用ID,单击部署

img

  1. 单击部署代码,等待部署完成即可。
4.2.2 测试检索效果

您可以在刷新网站后,对智能导购进行测试,智能导购会将检索到的商品信息输出。

img

5、应用于生产环境

为了将智能导购适配到您的产品并应用于生产环境中,您可以:

  1. 修改知识库。将您的商品信息作为知识库,同时您也可以在商品参数中添加商品详情页或下单页的链接,方便顾客进行浏览与下单。您也可以通过已有的数据库或其它服务中进行商品检索。
  2. 修改源码中的prompt来适配到您的产品中。修改源码的步骤为:
    1. 回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页
    2. 进入函数详情页后,在代码视图中找到prompt.py、agents.py文件并进行修改。

prompt.py定义了agent的功能以及询问参数的顺序等信息;agents.py创建了agent,以及生成回复的函数。

  1. 单击部署代码,等待部署完成即可。
  2. 参考10分钟给网站添加AI助手中的应用于生产环境部分,将智能导购集成到您的网站中

欢迎大家体验、试用阿里云百炼大模型和阿里云服务产品,链接如下:

阿里云百炼大模型

https://bailian.console.aliyun.com/

通义灵码_智能编码助手面向用户上线个人和企业版产品

https://tongyi.aliyun.com/lingma/pricing?userCode=jl9als0w

云工开物_阿里云高校计划助力高校科研与教育加速。

https://university.aliyun.com/mobile?userCode=jl9als0w

无影云电脑个人版简单易用、安全高效的云上桌面服务

https://www.aliyun.com/product/wuying/gws/personal_edition?userCode=jl9als0w

云服务器ECS省钱攻略五种权益,限时发放,不容错过

https://www.aliyun.com/daily-act/ecs/ecs_trial_benefits?userCode=jl9als0w

### 创建智能体应用程序概述 在百炼平台构建智能体应用程序涉及多个方面,从环境准备到最终部署。为了确保顺利开发,开发者需遵循一系列指导原则和最佳实践[^1]。 ### 环境设置与依赖管理 启动项目前,确认本地开发环境已正确配置至关重要。这包括但不限于Python虚拟环境的建立以及必需软件包的安装。对于本案例而言,`requests` 和 `pandas` 是两个不可或缺的库,可通过pip工具轻松获取: ```bash pip install requests pandas ``` 此外,API凭证的妥善配置同样不可忽视,这是保障后续调用服务安全性的前提条件之一[^3]。 ### 利用函数计算加速部署 借助阿里云提供的函数计算功能,可以极大简化Web端AI助手类应用的发布流程。这种方式不仅降低了运维成本,还提高了系统的灵活性和响应速度。有关更详尽的操作指南,请参阅相关资料以获得最权威的帮助和支持[^2]。 ### 整合AppFlow提升效率 作为一款强大的集成解决方案,AppFlow允许用户无需编写大量代码即可连接不同系统和服务。特别是当面对复杂的数据流场景时,利用现成的公共连接器能够显著减少定制化工作的负担,从而让团队专注于核心业务逻辑的设计与优化上[^4]。 ### 应用实例:基于RAG架构的智能导购 考虑到实际应用场景的需求多样性,在设计阶段引入诸如检索增强生成(Retrieval-Augmented Generation, RAG)这样的先进技术框架往往能带来意想不到的效果改进。例如,在电商领域内打造个性化推荐引擎时,该方法可以帮助机器更好地理解商品描述并据此给出更加贴切的回答建议[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Bruce_xiaowei

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值