快速幂(搬运+自己的理解)

几乎搬自百度百科(吐槽一句百度百科真是太强大了)

 

原理:

以下以求a的b次方来介绍 

把b转换成二进制。

该二进制数第i位的权为

 

例如

11的二进制是1011

11 = 2³×1 + 2²×0 + 2¹×1 + 2º×1

因此,我们将a¹¹转化为算

 

 

常规求幂

int pow1(int a,int b){
   int r=1;
   while(b--) r*=a;
   return r;
} 

嗯,正常人类算法

 

快速求幂(一般)

int pow2(int a,int b){
    int r=1,base=a;
    while(b!=0){
    if(b%2) r*=base;  //如果是奇数则第一步便运算,偶数则最后一步时继承值
    base*=base;  
    b/=2;
    }
    return r;
}

如果幂是偶数的话就相当于a的n次*a的n次(自己*自己)并且幂直接div 2(原理是转换成二进制看上文),最终b=1时由r来继承数值;如果是奇数则由r的处理来完成多出来的那次乘法,r一开始便赋值(即为多出来的那次),之后和偶数运算差不多。

 

快速求幂 (递归)

int f(int m,int n){   //m^n
    if(n==1) return m;
    int temp=f(m,n/2);
    return (n%2==0 ? 1 : m)*temp*temp;  //奇偶在此表现出差异
}

如果是奇数则在第二处注释处最后递归的函数会在乘上多出来的一次,如果是偶数则1*temp*temp不变

 

快速求幂(位运算)

int pow3(int x,int n){
  if(n==0) return 1;
  else {
    while((n&1)==0){
      n>>=1;
      x*=x;
    }
  }
  int result=x;
  n>>=1;
  while(n!=0){
    x*=x;
    if(n&1) result*=x;
    n>>=1;
  }
  return result;
}

 

快速求幂(位运算,更简洁)

int pow4(int a,int b){
  int r=1,base=a;
  while(b){
    if(b&1) r*=base;
    base*=base;
    b>>=1;
  }
  return r;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值