几乎搬自百度百科(吐槽一句百度百科真是太强大了)
原理:
以下以求a的b次方来介绍
把b转换成二进制。
该二进制数第i位的权为
例如
11的二进制是1011
11 = 2³×1 + 2²×0 + 2¹×1 + 2º×1
因此,我们将a¹¹转化为算
常规求幂
int pow1(int a,int b){
int r=1;
while(b--) r*=a;
return r;
}
嗯,正常人类算法
快速求幂(一般)
int pow2(int a,int b){
int r=1,base=a;
while(b!=0){
if(b%2) r*=base; //如果是奇数则第一步便运算,偶数则最后一步时继承值
base*=base;
b/=2;
}
return r;
}
如果幂是偶数的话就相当于a的n次*a的n次(自己*自己)并且幂直接div 2(原理是转换成二进制看上文),最终b=1时由r来继承数值;如果是奇数则由r的处理来完成多出来的那次乘法,r一开始便赋值(即为多出来的那次),之后和偶数运算差不多。
快速求幂 (递归)
int f(int m,int n){ //m^n
if(n==1) return m;
int temp=f(m,n/2);
return (n%2==0 ? 1 : m)*temp*temp; //奇偶在此表现出差异
}
如果是奇数则在第二处注释处最后递归的函数会在乘上多出来的一次,如果是偶数则1*temp*temp不变
快速求幂(位运算)
int pow3(int x,int n){
if(n==0) return 1;
else {
while((n&1)==0){
n>>=1;
x*=x;
}
}
int result=x;
n>>=1;
while(n!=0){
x*=x;
if(n&1) result*=x;
n>>=1;
}
return result;
}
快速求幂(位运算,更简洁)
int pow4(int a,int b){
int r=1,base=a;
while(b){
if(b&1) r*=base;
base*=base;
b>>=1;
}
return r;
}