这次的考试总的来说还可以吧,500分拿了400分
最后一题没来得及花多少时间打表找规律,整体的思路可能也错了。但对比一下以前的比赛应该是有进步了
T1
给出一个正整数 n,现在问存在多少个 x,使得 x在十进制下的每一位之和加上 x 等于 n。(n<=10^9)
因为x在十进制下的每一位之和加上 x 等于 n,所以n=x+a+b+c+d+…(a,b,c,d…为x每一位上的数)
又因为0<=a,b,c,d…<=9,所以每一位之和最大为9*9=81,因此只需枚举(n-100)~n即可
#include<bits/stdc++.h>
using namespace std;
int n;
int a[20];
int len,num=0,ans[110];
inline void apart(int x)
{
len=0;
while (x>0)
{
a[++len]=x%10;
x/=10;
}
return;
}
int main()
{
// cin>>n;
// for (int i1=0;i1<=9;i1++)
// for (int i2=0;i2<=9;i2++)
// for (int i3=0;i3<=9;i3++)
// for (int i4=0;i4<=9;i4++)
// for (int i5=0;i5<=9;i5++)
// for (int i6=0;i6<=9;i6++)
// {
// int sum=i1*100000+i2*10000+i3*1000+i4*100+i5*10+i6;
// if (sum>=n)
// return 0;
// if (sum+i1+i2+i3+i4+i5+i6==n)
// cout<<sum<<endl;
// }
freopen("num.in","r",stdin);
freopen("num.out","w",stdout);
scanf("%d",&n);
for (int i=max(0,n-100);i<=n;i++)
{
apart(i);
int sum=i;
for (int j=len;j>=1;j--)
sum+=a[j];
if (sum==n)
ans[++num]=i;
}
printf("%d\n",num);
for (int i=1;i<=num;i++)
printf("%d\n",ans[i]);
return 0;
}
当然可能会超时的九重循环暴力也过了(也就是注释部分)
T2
蓝月商城出新技能书了!!
如果古天乐想购买“旋风斩”,则他需要花费A元;如果古天乐想买“半月弯刀”,则需要B元;如果古天乐两个一起买,则需要C元。
蓝月的设计师非常有头脑,每样商品的利润都是相同的。即假设旋风斩和半月弯刀的成本为a,b元,则A-a=B-b=C-a-b。
给出A,B,C求出利润,数据保证为正数。
这个就更简单了,答案就是A+B-C
这里给出证明:
设利润为x
∵ A-a=B-b=C-a-b=x
∴A=a+x B=b+x C=a+b+x
∴A+B-C=(a+x)+(b+x)-(a+b+x)
∴A+B-C=x
#include<bits/stdc++.h>
using namespace std;
int T;
int a,b,c;
int main()
{
freopen("combo.in","r",stdin);
freopen("combo.out","w",stdout);
scanf("%d",&T);
while (T--)
{
scanf("%d%d%d",&a,&b,&c);
printf("%d\n",a+b-c);
}
return 0;
}
T3
古天乐在搭积木,积木图可以抽象为一个n*m的网格图,其中第(i,j)的位置有A[i][j]个积木。求表面积。
首先为了更好地了解题目,我先画了几幅立体图来寻找规律(画图是个好东西 )
我们先画了一个3*3的图,图上积木数为
1 2 4
2 2 3
1 3 4
可能一幅找不出来,那么再多画几幅
这分别是第一幅图逆时针旋转的图像,代表四个侧面
显然我们只要数出每幅图中朝着正面的面即可求出表面积,至于上下面积必定为n*m(题目规定1<=a[i][j]<=100)
每个正面的面积只包括一下几个面积
由于我们画立体图时是从后往前画的,所以计算时也要从后往前计算
计算正面的面积我们先从几幅基本图形入手
- 前面的立方体小于等于后面的立方体
这种情况面积不变,被覆盖的面积又补了回来,所以可以不做处理
- 前面的立方体大于后面的立方体
因为后面一格的立方体全都被覆盖了,所以就失去了a[i-1][j]个面积,增多了a[i][j]个面积,实际多了a[i][j]-a[i-1][j]个面积
这就是所有的情况,因为我们在判断时只关注身后a[i-1][j]的格子,所以下面的情况无需多加判断
#include<bits/stdc++.h>
using namespace std;
int n,m;
int a[110][110];
int ans=0;
int main()
{
freopen("surface.in","r",stdin);
freopen("surface.out","w",stdout);
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
scanf("%d",&a[i][j]);
for (int i=1;i<=m;i++)//前面的总面积
for (int j=1;j<=n;j++)
if (a[j][i]>=a[j-1][i])
ans=ans-a[j-1][i]+a[j][i];
for (int i=1;i<=n;i++)//左面的总面积
for (int j=m;j>=1;j--)
if (a[i][j]>=a[i][j+1])
ans=ans-a[i][j+1]+a[i][j];
for (int i=m;i>=1;i--)//后面的总面积
for (int j=n;j>=1;j--)
if (a[j][i]>=a[j+1][i])
ans=ans-a[j+1][i]+a[j][i];
for (int i=n;i>=1;i--)//右面的总面积
for (int j=1;j<=m;j++)
if (a[i][j]>=a[i][j-1])
ans=ans-a[i][j-1]+a[i][j];
ans+=n*m*2;//上下两面的面积
printf("%d\n",ans);
return 0;
}
代码中核心的判断语句不变,循环顺序的改变其实是将立体图旋转过后再从后往前判断的次序
T4
给定一个n*n的棋盘,行和列标号为0,1,2,….,n-1。在棋盘的(i_start,j_start)位置上有一位红皇后,每次红皇后可以往六个方向走,如图所示:
现在红皇后想去(i_end,j_end)点,求最短距离,并且输出一条路径。
显然最短路径有无穷条,请按照以下顺序来搜索:UL, UR, R, LR, LL, L。
如果无解,输出Impossible
这是要求最短的路径,所以肯定是一道BFS,用BFS做即可
至于输出方案有人是将求出的最短路径重新DFS一遍,我就把队列设成结构体,在BFS同时记录每个队列中的数的路径输出
#include<bits/stdc++.h>
using namespace std;
struct queue
{
int x,y,ans;
string s;
}q[1001000];
int n;
int head=0,tail=0;
int bgx,bgy,edx,edy;
int f[210][210];
int dx[6]={-2,-2,0,+2,+2,0};
int dy[6]={-1,+1,+2,+1,-1,-2};
string walk[6]={"UL","UR","R","LR","LL","L"};
void bfs()
{
head=0,tail=0;
f[bgx][bgy]=0;
q[++tail].x=bgx,q[tail].y=bgy;
q[tail].ans=0;
while (++head<=tail)
{
if (q[head].x==edx&&q[head].y==edy)
{
cout<<q[head].ans<<endl;
cout<<q[head].s<<endl;
return;
}
for (int i=0;i<6;i++)//正常的BFS
{
int tx=q[head].x+dx[i],ty=q[head].y+dy[i];
if (tx<0||ty<0||tx>=n||ty>=n)
continue;
if (f[tx][ty]<=q[head].ans+1)//记忆化防TLE
continue;
q[++tail].x=tx,q[tail].y=ty;
f[tx][ty]=q[tail].ans=q[head].ans+1;
if (q[tail].ans==1)//防评测机不过滤行末空格
q[tail].s=q[head].s+walk[i];
else
q[tail].s=q[head].s+" "+walk[i];//路径增加
}
}
cout<<"Impossible"<<endl;
return;
}
int main()
{
freopen("redqueen.in","r",stdin);
freopen("redqueen.out","w",stdout);
memset(f,0x3f3f3f3f,sizeof(f));
cin>>n;
cin>>bgx>>bgy>>edx>>edy;
bfs();
return 0;
}
T5
有一个长度为n的序列A,其中A[1]=1,A[n]=x,A[2…n-1]可以是1至k间任意一个正整数。求有多少个不同的序列,使得相邻两个数不同。
答案对10^9+7取模。
递推+打表,没什么好说的
偷懒
代码片
#include<bits/stdc++.h>
using namespace std;
const int N=1000000007;
int n,k,x;
long long sum=1;
long long f[100100],fx[100100];
int main()
{
freopen("construct.in","r",stdin);
freopen("construct.out","w",stdout);
scanf("%d%d%d",&n,&k,&x);
f[2]=k-1;
for (int i=3;i<n;i++)
f[i]=(f[i-1]*(k-1))%N;
if (x==1)
fx[2]=0;
else
fx[2]=1;
for (int i=3;i<=n;i++)
fx[i]=(f[i-1]-fx[i-1]+N)%N;
printf("%lld\n",fx[n]);
return 0;
}
这篇博客就到此结束了,看着也写了挺多的