2019.5.31考试总结

这次的考试总的来说还可以吧,500分拿了400分
最后一题没来得及花多少时间打表找规律,整体的思路可能也错了。但对比一下以前的比赛应该是有进步了


T1

给出一个正整数 n,现在问存在多少个 x,使得 x在十进制下的每一位之和加上 x 等于 n。(n<=10^9)

因为x在十进制下的每一位之和加上 x 等于 n,所以n=x+a+b+c+d+…(a,b,c,d…为x每一位上的数)

又因为0<=a,b,c,d…<=9,所以每一位之和最大为9*9=81,因此只需枚举(n-100)~n即可

#include<bits/stdc++.h>
using namespace std;
int n;
int a[20];
int len,num=0,ans[110];
inline void apart(int x)
{
	len=0;
	while (x>0)
	  {
	  	a[++len]=x%10;
	  	x/=10;
	  }
	return;
}
int main()
{
//	cin>>n;
//	for (int i1=0;i1<=9;i1++)
//	  for (int i2=0;i2<=9;i2++)
//	    for (int i3=0;i3<=9;i3++)
//	      for (int i4=0;i4<=9;i4++)
//	        for (int i5=0;i5<=9;i5++)
//	          for (int i6=0;i6<=9;i6++)
//	            {
//	            	int sum=i1*100000+i2*10000+i3*1000+i4*100+i5*10+i6;
//	            	if (sum>=n)
//	            	  return 0;
//	            	if (sum+i1+i2+i3+i4+i5+i6==n)
//	            	  cout<<sum<<endl;
//				}
	freopen("num.in","r",stdin);
	freopen("num.out","w",stdout);
	scanf("%d",&n);
	for (int i=max(0,n-100);i<=n;i++)
	  {
	  	apart(i);
	  	int sum=i;
	  	for (int j=len;j>=1;j--)
	      sum+=a[j];
	    if (sum==n)
	      ans[++num]=i;
	  }
	printf("%d\n",num);
	for (int i=1;i<=num;i++) 
	  printf("%d\n",ans[i]);
	return 0;
} 

当然可能会超时的九重循环暴力也过了(也就是注释部分)

T2

蓝月商城出新技能书了!!
如果古天乐想购买“旋风斩”,则他需要花费A元;如果古天乐想买“半月弯刀”,则需要B元;如果古天乐两个一起买,则需要C元。
蓝月的设计师非常有头脑,每样商品的利润都是相同的。即假设旋风斩和半月弯刀的成本为a,b元,则A-a=B-b=C-a-b。
给出A,B,C求出利润,数据保证为正数。

这个就更简单了,答案就是A+B-C

这里给出证明:
设利润为x
∵ A-a=B-b=C-a-b=x
∴A=a+x B=b+x C=a+b+x
∴A+B-C=(a+x)+(b+x)-(a+b+x)
∴A+B-C=x

#include<bits/stdc++.h>
using namespace std;
int T;
int a,b,c;
int main()
{
	freopen("combo.in","r",stdin);
	freopen("combo.out","w",stdout);
	scanf("%d",&T);
	while (T--)
	{
		scanf("%d%d%d",&a,&b,&c);
		printf("%d\n",a+b-c);
	}
	return 0;
}

T3

古天乐在搭积木,积木图可以抽象为一个n*m的网格图,其中第(i,j)的位置有A[i][j]个积木。求表面积。

首先为了更好地了解题目,我先画了几幅立体图来寻找规律(画图是个好东西

我们先画了一个3*3的图,图上积木数为
1 2 4
2 2 3
1 3 4
在这里插入图片描述
可能一幅找不出来,那么再多画几幅
在这里插入图片描述
这分别是第一幅图逆时针旋转的图像,代表四个侧面

显然我们只要数出每幅图中朝着正面的面即可求出表面积,至于上下面积必定为n*m(题目规定1<=a[i][j]<=100)

每个正面的面积只包括一下几个面积
在这里插入图片描述
由于我们画立体图时是从后往前画的,所以计算时也要从后往前计算

计算正面的面积我们先从几幅基本图形入手

  1. 前面的立方体小于等于后面的立方体
    这种情况面积不变,被覆盖的面积又补了回来,所以可以不做处理
    在这里插入图片描述在这里插入图片描述
  2. 前面的立方体大于后面的立方体
    因为后面一格的立方体全都被覆盖了,所以就失去了a[i-1][j]个面积,增多了a[i][j]个面积,实际多了a[i][j]-a[i-1][j]个面积
    在这里插入图片描述
    这就是所有的情况,因为我们在判断时只关注身后a[i-1][j]的格子,所以下面的情况无需多加判断

在这里插入图片描述

#include<bits/stdc++.h>
using namespace std;
int n,m;
int a[110][110]; 
int ans=0;
int main()
{
	freopen("surface.in","r",stdin);
	freopen("surface.out","w",stdout);
	scanf("%d%d",&n,&m);
	for (int i=1;i<=n;i++)
	  for (int j=1;j<=m;j++)
	    scanf("%d",&a[i][j]);
	for (int i=1;i<=m;i++)//前面的总面积 
	  for (int j=1;j<=n;j++)
	    if (a[j][i]>=a[j-1][i])
	      ans=ans-a[j-1][i]+a[j][i];
	for (int i=1;i<=n;i++)//左面的总面积 
	  for (int j=m;j>=1;j--)
	    if (a[i][j]>=a[i][j+1])
	      ans=ans-a[i][j+1]+a[i][j];
	for (int i=m;i>=1;i--)//后面的总面积 
	  for (int j=n;j>=1;j--)
	    if (a[j][i]>=a[j+1][i])
	      ans=ans-a[j+1][i]+a[j][i];
	for (int i=n;i>=1;i--)//右面的总面积 
	  for (int j=1;j<=m;j++)
	    if (a[i][j]>=a[i][j-1])
	      ans=ans-a[i][j-1]+a[i][j];
	ans+=n*m*2;//上下两面的面积 
	printf("%d\n",ans);
	return 0;
} 

代码中核心的判断语句不变,循环顺序的改变其实是将立体图旋转过后再从后往前判断的次序

T4

给定一个n*n的棋盘,行和列标号为0,1,2,….,n-1。在棋盘的(i_start,j_start)位置上有一位红皇后,每次红皇后可以往六个方向走,如图所示:
在这里插入图片描述
现在红皇后想去(i_end,j_end)点,求最短距离,并且输出一条路径。
显然最短路径有无穷条,请按照以下顺序来搜索:UL, UR, R, LR, LL, L。
如果无解,输出Impossible

这是要求最短的路径,所以肯定是一道BFS,用BFS做即可
至于输出方案有人是将求出的最短路径重新DFS一遍,我就把队列设成结构体,在BFS同时记录每个队列中的数的路径输出

#include<bits/stdc++.h>
using namespace std;
struct queue
{
	int x,y,ans;
	string s;
}q[1001000];
int n;
int head=0,tail=0;
int bgx,bgy,edx,edy;
int f[210][210];
int dx[6]={-2,-2,0,+2,+2,0};
int dy[6]={-1,+1,+2,+1,-1,-2};
string walk[6]={"UL","UR","R","LR","LL","L"};
void bfs()
{
	head=0,tail=0;
	f[bgx][bgy]=0;
	q[++tail].x=bgx,q[tail].y=bgy;
	q[tail].ans=0;
	while (++head<=tail)
	  {
	  	if (q[head].x==edx&&q[head].y==edy)
	  	  {
	  	  	cout<<q[head].ans<<endl;
	  	  	cout<<q[head].s<<endl;
	  	  	return;
		  }
	  	for (int i=0;i<6;i++)//正常的BFS 
	  	  {
	  	  	int tx=q[head].x+dx[i],ty=q[head].y+dy[i];
	  	  	if (tx<0||ty<0||tx>=n||ty>=n)
	  	  	  continue;
	  	  	if (f[tx][ty]<=q[head].ans+1)//记忆化防TLE 
	  	  	  continue;
	  	  	q[++tail].x=tx,q[tail].y=ty;
	  	  	f[tx][ty]=q[tail].ans=q[head].ans+1;
	  	  	if (q[tail].ans==1)//防评测机不过滤行末空格 
	  	  	  q[tail].s=q[head].s+walk[i]; 
	  	  	else
	  	  	  q[tail].s=q[head].s+" "+walk[i];//路径增加 
		  }
	  }
	cout<<"Impossible"<<endl;
	return;
}
int main()
{
	freopen("redqueen.in","r",stdin);
	freopen("redqueen.out","w",stdout);
	memset(f,0x3f3f3f3f,sizeof(f));
	cin>>n;
	cin>>bgx>>bgy>>edx>>edy;
	bfs();
	return 0;
}

T5

有一个长度为n的序列A,其中A[1]=1,A[n]=x,A[2…n-1]可以是1至k间任意一个正整数。求有多少个不同的序列,使得相邻两个数不同。
答案对10^9+7取模。

递推+打表,没什么好说的

偷懒
在这里插入图片描述在这里插入图片描述
代码片

#include<bits/stdc++.h>
using namespace std;
const int N=1000000007;
int n,k,x;
long long sum=1;
long long f[100100],fx[100100];
int main()
{
	freopen("construct.in","r",stdin);
	freopen("construct.out","w",stdout);
	scanf("%d%d%d",&n,&k,&x);
	f[2]=k-1;
	for (int i=3;i<n;i++)
	  f[i]=(f[i-1]*(k-1))%N;
	if (x==1)
	  fx[2]=0;
	else
	  fx[2]=1;
	for (int i=3;i<=n;i++)
	  fx[i]=(f[i-1]-fx[i-1]+N)%N;
	printf("%lld\n",fx[n]);
	return 0;
}

这篇博客就到此结束了,看着也写了挺多的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值