最优解-背包问题

本文介绍了如何使用动态规划算法解决背包问题,通过定义状态dp[i][j]表示前i件物品在限重j下的最大价值,通过比较不放物品和放物品i两种情况,计算出背包中物品的最大总价值。给出的示例代码展示了这一过程并输出了最大价值为3500。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。

基本思路

目标是书包内物品的总价值,而变量是物品和书包的限重,所以我们可定义状态dp:dp[i][j]表示将前i件物品装进限重为j的背包可以获得的最大价值, 0<=i<=N, 0<=j<=W
不放物品i:由dp[i-1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。物品i的重量大于物品j的重量,导致放不进去,只能用之前的重量
放物品:由dp[i-1][j-weight[i]]推出,dp[i-1][j-weight[i]] 为背包容量为j-weight[i]的时候不放物品i的最大价值,那么dp[i-1][j-weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值。
最终,在dp[i][j]最后一个单元格里(即最后一行最后一列所在位置)就存放着该背包所能装下的最大价值。

package com.algorithm;

import java.util.Arrays;

public class Knapsack {

        public static void main(String[] args) {
            int w[] = new int[] {1,4,3}; //每个物品的重量
            int v[] = new int[] {1500,3000,2000}; //每个物品的价值
            int m = 4; //背包容量
            int n = v.length; //物品的个数
            //记录放入商品的情况,我们定义一个二维数组
            int[][] dp = new int[n+1][m+1];
            //定义状态转移机
            int[][] value = new int[n+1][m+1];
            //初始化
            for (int i = 0; i < value.length; i++) {
                value[i][0] = 0; //第一行
                value[0][i] = 0;//第一列
            }
            for (int i = 1; i < n+1; i++) {
                for (int j = 1; j < m+1; j++) {
                    int index = i-1; //下标从0开始
                    if(w[index] > j) {
                        value[i][j] = value[i-1][j];//超重了
                    } else {
                        value[i][j] = Math.max(value[i-1][j],value[i-1][j-w[index]]+v[index]);
                    }
                    System.out.print(value[i][j]+",");
                }
                System.out.println("");
            }
            System.out.println("max value="+value[n][m]);
        }
}

输出结果:
1500,1500,1500,1500,
1500,1500,1500,3000,
1500,1500,2000,3500,
max value=3500

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值