import csv
import os
import cv2
import numpy as np
net = cv2.dnn.readNet('dnn_model\yolov4.cfg', 'dnn_model\yolov4.weights') # opencv调用YOLOv4权重文件及参数表
model = cv2.dnn_DetectionModel(net) # 获取模型及权中参数文件
model.setInputParams(size=(416, 416), scale=1 / 255) # 设置图像的大小,改变图像的模式在(0~1)之间。
classes = [] # 存放每个分类的名称。
with open('dnn_model\classes.txt') as file_obj: # 打开类别文件,定义新名称为file_obj
for class_name in file_obj.readlines(): # 获取文本中的每一行
class_name = class_name.strip() # 删除文本中的换行符、空格等
classes.append(class_name) # 将每个分类名保存到列表中
f = open('F:/python learn/yolov4-test/recog_result.csv', 'w', newline='') # 打开CSV文件
csv_writer = csv.writer(f) # 对表格进行填写功能
csv_writer.writerow(["图片名称", "识别结果"]) # 在表格文件填写表头
path = "F:/python learn/yolov4-test/test/" # 设置路径
path_objective = "F:/python learn/yolov4-test/objective_store/"
Python图像遍历YOLOv4特征识别+CSV结果存储
最新推荐文章于 2024-04-27 16:08:06 发布
该博客介绍了如何使用Python结合OpenCV调用YOLOv4模型进行图像遍历,识别特定对象(如bus和truck),并将识别结果存储到CSV文件中。通过读取权重文件、配置文件以及类别文本,博主展示了识别过程,并将检测到的目标图像保存到指定目录。

最低0.47元/天 解锁文章
670

被折叠的 条评论
为什么被折叠?



