- 博客(8)
- 收藏
- 关注
原创 opencv-python笔记
注意:在OpenCV 4.x版本中,COLORMAR_INFERNO属性已经被移除。如果你需要使用这个属性,可以尝试降级到OpenCV 3.x版本。利用均值方差统计可以筛选空白图片,方差为0 说明无有效信息。4通道:蓝 (B)、绿 (G)、红 (R)、透明。只能显示0-1的浮点数和0-255的uint8。3通道:蓝 (B)、绿 (G)、红 (R)文件超过2G可能会出现问题。
2023-10-06 18:52:28 110 1
原创 python开发面试题
11.如何在Flask中处理用户登录和会话管理?12.如何处理多个数据集之间的缺失值和重复值?4.Flask如何处理GET和POST请求?12.Flask如何实现表单验证和数据校验?14.Flask如何进行单元测试和集成测试?5.Flask如何读取请求的JSON数据?6.如何在Flask中处理用户认证和授权?8.如何处理Flask应用中的错误和异常?10.Flask如何支持国际化和本地化?19.如何评估模型的性能和进行模型调优?3.如何在Flask中处理URL路由?13.如何优化Flask应用的性能?
2023-09-17 17:22:48 204 1
原创 JAVA后端开发常见面试题
什么是Java的多态性?多态性是Java的一个重要特性,它允许通过使用一个父类引用来引用子类对象,从而实现同一个方法在不同对象上的多种不同的行为。 什么是Java的垃圾回收(GC)机制?Java的垃圾回收机制是自动管理内存的过程。通过运行时系统自动检测和收集不再使用的对象,并释放其占用的内存空间。这种机制可以减轻开发人员对内存管理的负担。 什么是Java中的异常处理机制?有哪些常见的异常?Java中的异常处理机制用于处理程序在运行时遇到的错误和异常情况。常见的异常包括NullPointerExcepti
2023-09-06 20:21:19 366 1
原创 坐标移动
开发一个坐标计算工具, A表示向左移动,D表示向右移动,W表示向上移动,S表示向下移动。从(0,0)点开始移动,从输入字符串里面读取一些坐标,并将最终输入结果输出到输出文件里面。非法坐标点需要进行丢弃。合法坐标为A(或者D或者W或者S) + 数字(两位以内)+ B10A11 = 无效。+ A1A = 无效。+ x = 无效。结果 (10,-10)
2023-09-04 22:35:05 68 1
原创 一、Nacos
(2)直接搜索set MODE="cluster",替换为set MODE="standalone",原来默认的是集群,现在修改为单机模式。(1)配置 spring.application.name ,是因为它是构成 Nacos 配置管理 dataId字段的一部分。我们可以看到,在里面可以配置Nacos的权重、上下线这些和部署相关的内容,我们就可以根据实际的业务情况进行相关配置。(1)进入解压目录下的bin文件夹下,修改startup.cmd里面的内容。(3)Nacos的负载均衡测试。
2023-08-15 19:24:06 343
原创 常见的Java springboot项目报错
查找本地的Maven plugin版本号,版本号在本地maven库的org\apache\maven\plugins\maven-compiler-plugin里,如:D:\IntelliJ IDEA 2020.1\plugins\maven\lib\maven3\maven_repository\org\apache\maven\plugins\maven-compiler-plugin。从Java 9开始,该模块已被移除,如果使用的是Java 9或更高版本,则需要使用其他方式来监控和管理应用程序。
2023-08-15 18:07:07 949
原创 IDEA中springboot项目配置
1.2 勾选 User Settings file 后面的 Override,并指定本地仓库的 setting.xml 文件;在弹出对话框中,展开“Build,Execution,Deployment”,在 Build Tools 下选择 Maven。(1)配置 MAVEN_HOME ,变量值就是你的maven安装的路径(bin目录之前一级目录)1.1 在 Maven home path 中,指定本地 Maven 的位置;1.3.2 配置本地仓库路径。1.3.4 测试安装是否成功。
2023-08-15 18:04:32 908
转载 常见深度学习面试题
的中文翻译一般叫做“规范化”,是一种对数值的特殊函数变换方法,也就是说假设原始的某个数值是x,套上一个起到规范化作用的函数,对规范化之前的数值x进行转换,形成一个规范化后的数值。当学习率太低时,模型的训练将进展得非常缓慢,因为只对权重进行最小的更新。规范化将越来越偏的分布拉回到标准化的分布,使得激活函数的输入值落在激活函数对输入比较敏感的区域,从而使梯度变大,加快学习收敛速度,避免梯度消失的问题。它考虑当前输入和先前接收到的输入,以生成层的输出,并且由于其内部存储器,它可以记住过去的数据。
2023-08-15 18:00:30 71
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人