2 数学基础:概率-高斯分布

1 一维情况 MLE

1.1 均值、方差估计

数据: X = ( x 1 , x 2 , . . . . . . , x N ) T = ( x 1 T x 2 T ⋮ x N T ) N × p X=(x_{1},x_{2},......,x_{N})^{T}=\left(\begin{array}{c}x_{1}^{T} \\ x_{2}^{T} \\ \vdots \\ x_{N}^{T}\end{array}\right)_{N \times p} X=(x1,x2,......,xN)T=x1Tx2TxNTN×p
x i ∈ R p x_{i} \in \mathbb{R}^{p} xiRp
x i ∼ i i d N ( μ , Σ ) x_{i}\sim ^{iid}N(\mu, \Sigma) xiiidN(μ,Σ)
θ = ( μ , Σ ) \theta=(\mu,\Sigma) θ=(μ,Σ)
变量x独立同分布,服从于 ( μ , Σ ) (\mu,\Sigma) (μ,Σ)的高斯分布

高斯分布在机器学习中占有举足轻重的作用。在 MLE 方法中:

θ = ( μ , Σ ) = ( μ , σ 2 ) , θ M L E = a r g m a x θ log ⁡ p ( X ∣ θ ) = i i d a r g m a x θ ∑ i = 1 N log ⁡ p ( x i ∣ θ ) \theta=(\mu,\Sigma)=(\mu,\sigma^{2}),\theta_{MLE}=\mathop{argmax}\limits _{\theta}\log p(X|\theta)\mathop{=}\limits _{iid}\mathop{argmax}\limits _{\theta}\sum\limits _{i=1}^{N}\log p(x_{i}|\theta) θ=(μ,Σ)=(μ,σ2),θMLE=θargmaxlogp(Xθ)iid=θargmaxi=1Nlogp(xiθ) 一般地,高斯分布的概率密度函数PDF写为:

p ( x ∣ μ , Σ ) = 1 ( 2 π ) p / 2 ∣ Σ ∣ 1 / 2 e − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) p(x|\mu,\Sigma)=\frac{1}{(2\pi)^{p/2}|\Sigma|^{1/2}}e^{-\frac{1}{2}(x-\mu)^{T}\Sigma^{-1}(x-\mu)} p(xμ,Σ)=(2π)p/2Σ1/21e21(xμ)TΣ1(xμ)
带入 MLE 中我们考虑一维的情况,需求解参数有 μ , σ \mu,\sigma μ,σ

log ⁡ p ( X ∣ θ ) = log ⁡ ∏ i = 1 N p ( x i ∣ θ ) = ∑ i = 1 N log ⁡ p ( x i ∣ θ ) = ∑ i = 1 N log ⁡ 1 2 π σ exp ⁡ ( − ( x i − μ ) 2 / 2 σ 2 ) = ∑ i = 1 N [ log ⁡ 1 2 π + log ⁡ 1 σ − ( x i − μ ) 2 / 2 σ 2 ] \begin{aligned} \log p(X|\theta)=\log\prod\limits _{i=1}^{N} p(x_{i}|\theta) &=\sum\limits _{i=1}^{N}\log p(x_{i}|\theta) \\ &=\sum\limits _{i=1}^{N}\log\frac{1}{\sqrt{2\pi}\sigma}\exp(-(x_{i}-\mu)^{2}/2\sigma^{2}) \\ &=\sum\limits _{i=1}^{N}\left[\log\frac{1}{\sqrt{2\pi}}+ \log\frac{1}{\sigma}-(x_{i}-\mu)^{2}/2\sigma^{2}\right] \end{aligned} logp(Xθ)=logi=1Np(xiθ)=i=1Nlogp(xiθ)=i=1Nlog2π σ1exp((xiμ)2/2σ2)=i=1N[log2π 1+logσ1(xiμ)2/2σ2]

估计结果
均值无偏 μ M L E = 1 N ∑ i = 1 N x i \mu_{MLE}=\frac{1}{N}\sum\limits_ {i=1}^{N}x_{i} μMLE=N1i=1Nxi
方差有偏 σ M L E 2 = 1 N ∑ i = 1 N ( x i − μ M L E ) 2 \sigma_{MLE}^{2}=\frac{1}{N}\sum\limits _{i=1}^{N}(x_{i}-\mu_{MLE})^{2} σMLE2=N1i=1N(xiμMLE)2
无偏方差 σ ^ 2 = 1 N − 1 ∑ i = 1 N ( x i − μ M L E ) 2 \hat{\sigma}^{2}=\frac{1}{N-1}\sum\limits_ {i=1}^{N}(x_{i}-\mu_{MLE})^{2} σ^2=N11i=1N(xiμMLE)2

首先对 μ \mu μ 的极值可以得到 : μ M L E = a r g m a x μ log ⁡ p ( X ∣ θ ) = a r g m a x μ − ( x i − μ ) 2 / 2 σ 2 = a r g m i n μ ∑ i = 1 N ( x i − μ ) 2 \mu_{MLE}=\mathop{argmax}\limits _{\mu}\log p(X|\theta)=\mathop{argmax}\limits_ {\mu}-(x_{i}-\mu)^{2}/2\sigma^{2} =\mathop{argmin}\limits_ {\mu}\sum\limits _{i=1}^{N}(x_{i}-\mu)^{2} μMLE=μargmaxlogp(Xθ)=μargmax(xiμ)2/2σ2=μargmini=1N(xiμ)2

于是: ∂ ∂ μ ∑ i = 1 N ( x i − μ ) 2 = 0 ⟶ μ M L E = 1 N ∑ i = 1 N x i \frac{\partial}{\partial\mu}\sum\limits _{i=1}^{N}(x_{i}-\mu)^{2}=0\longrightarrow\mu_{MLE}=\frac{1}{N}\sum\limits_ {i=1}^{N}x_{i} μi=1N(xiμ)2=0μMLE=N1i=1Nxi

其次对 θ \theta θ 中的另一个参数 σ \sigma σ ,有:
σ M L E = a r g m a x σ log ⁡ p ( X ∣ θ ) = a r g m a x σ ∑ i = 1 N [ − log ⁡ σ − 1 2 σ 2 ( x i − μ ) 2 ] = a r g m i n σ ∑ i = 1 N [ log ⁡ σ + 1 2 σ 2 ( x i − μ ) 2 ] \begin{aligned} \sigma_{M L E}=\mathop{argmax}\limits _{\sigma} \log p(X | \theta) &=\mathop{argmax}\limits_{\sigma} \sum_{i=1}^{N}\left[-\log \sigma-\frac{1}{2 \sigma^{2}}\left(x_{i}-\mu\right)^{2}\right] \\ &=\mathop{argmin}\limits _{\sigma} \sum_{i=1}^{N}\left[\log \sigma+\frac{1}{2 \sigma^{2}}\left(x_{i}-\mu\right)^{2}\right] \end{aligned} σMLE=σargmaxlogp(Xθ)=σargmaxi=1N[logσ2σ21(xiμ)2]=σargmini=1N[logσ+2σ21(xiμ)2]

于是: ∂ ∂ σ ∑ i = 1 N [ log ⁡ σ + 1 2 σ 2 ( x i − μ ) 2 ] = 0 ⟶ σ M L E 2 = 1 N ∑ i = 1 N ( x i − μ ) 2 \frac{\partial}{\partial\sigma}\sum\limits _{i=1}^{N}[\log\sigma+\frac{1}{2\sigma^{2}}(x_{i}-\mu)^{2}]=0\longrightarrow\sigma_{MLE}^{2}=\frac{1}{N}\sum\limits _{i=1}^{N}(x{i}-\mu)^{2} σi=1N[logσ+2σ21(xiμ)2]=0σMLE2=N1i=1N(xiμ)2

1.2 有偏vs无偏

值得注意的是,上面的推导中,首先对 μ \mu μ 求 MLE, 然后利用这个结果求 σ M L E \sigma_{MLE} σMLE ,因此可以预期的是对数据集求期望时 E D [ μ M L E ] \mathbb{E}_{\mathcal{D}}[\mu_{MLE}] ED[μMLE]无偏差的 E D [ μ M L E ] = E D [ 1 N ∑ i = 1 N x i ] = 1 N ∑ i = 1 N E D [ x i ] = μ \mathbb{E}_{\mathcal{D}}[\mu_{MLE}]=\mathbb{E}_{\mathcal{D}}[\frac{1}{N}\sum\limits _{i=1}^{N}x_{i}]=\frac{1}{N}\sum\limits _{i=1}^{N}\mathbb{E}_{\mathcal{D}}[x_{i}]=\mu ED[μMLE]=ED[N1i=1Nxi]=N1i=1NED[xi]=μ
(因为 x i x_{i} xi独立同分布,所以 E D [ x i ] = μ \mathbb{E}_{\mathcal{D}}[x_{i}]=\mu ED[xi]=μ)

但是当对 σ M L E \sigma_{MLE} σMLE 求 期望的时候由于使用了单个数据集的 μ M L E \mu_{MLE} μMLE,因此对所有数据集求期望的时候我们会发现 σ M L E \sigma_{MLE} σMLE有偏的

E D [ σ M L E 2 ] = E D [ 1 N ∑ i = 1 N ( x i − μ M L E ) 2 ] = E D [ 1 N ∑ i = 1 N ( x i 2 − 2 x i μ M L E + μ M L E 2 ) = E D [ 1 N ∑ i = 1 N x i 2 − μ M L E 2 ] = E D [ 1 N ∑ i = 1 N x i 2 − μ 2 + μ 2 − μ M L E 2 ] = E D [ 1 N ∑ i = 1 N ( x i 2 − μ 2 ) ] − E D [ μ M L E 2 − μ 2 ] = 1 N ∑ i = 1 N ( E D ( x i 2 ) − μ 2 ) − ( E D [ μ M L E 2 ] − E D 2 [ μ M L E ] ) = 1 N ∑ i = 1 N ( E D ( x i 2 ) − ( E D 2 ( x i ) ) ) − Var ⁡ [ μ M L E ] = σ 2 − Var ⁡ [ 1 N ∑ i = 1 N x i ] = σ 2 − 1 N 2 ∑ i = 1 N Var ⁡ [ x i ] = N − 1 N σ 2 \begin{aligned} \mathbb{E}_{\mathcal{D}}\left[\sigma_{M L E}^{2}\right] &=\mathbb{E}_{\mathcal{D}}\left[\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu_{M L E}\right)^{2}\right]=\mathbb{E}_{\mathcal{D}}\left[\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}^{2}-2 x_{i} \mu_{M L E}+\mu_{M L E}^{2}\right)\right.\\ &=\mathbb{E}_{\mathcal{D}}\left[\frac{1}{N} \sum_{i=1}^{N} x_{i}^{2}-\mu_{M L E}^{2}\right]=\mathbb{E}_{\mathcal{D}}\left[\frac{1}{N} \sum_{i=1}^{N} x_{i}^{2}-\mu^{2}+\mu^{2}-\mu_{M L E}^{2}\right] \\ &=\mathbb{E}_{\mathcal{D}}\left[\frac{1}{N} \sum_{i=1}^{N} (x_{i}^{2}-\mu^{2})\right]-\mathbb{E}_{ \mathcal{D}}\left[\mu_{M L E}^{2}-\mu^{2}\right] \\ &=\frac{1}{N} \sum_{i=1}^{N} (\mathbb{E}_{\mathcal{D}}(x_{i}^{2})-\mu^{2})-\left(\mathbb{E}_{\mathcal{D}}\left[\mu_{M L E}^{2}\right]-\mathbb{E}_{\mathcal{D}}^{2}\left[\mu_{M L E}\right]\right)\\ &=\frac{1}{N} \sum_{i=1}^{N} (\mathbb{E}_{\mathcal{D}}(x_{i}^{2})-(\mathbb{E}_{\mathcal{D}}^{2}(x_{i})))-\operatorname{Var}\left[\mu_{M L E}\right] \\ &=\sigma^{2}-\operatorname{Var}\left[\frac{1}{N} \sum_{i=1}^{N} x_{i}\right]\\ &=\sigma^{2}-\frac{1}{N^{2}} \sum_{i=1}^{N} \operatorname{Var}\left[x_{i}\right]\\ &=\frac{N-1}{N} \sigma^{2} \end{aligned} ED[σMLE2]=ED[N1i=1N(xiμMLE)2]=ED[N1i=1N(xi22xiμMLE+μMLE2)=ED[N1i=1Nxi2μMLE2]=ED[N1i=1Nxi2μ2+μ2μMLE2]=ED[N1i=1N(xi2μ2)]ED[μMLE2μ2]=N1i=1N(ED(xi2)μ2)(ED[μMLE2]ED2[μMLE])=N1i=1N(ED(xi2)(ED2(xi)))Var[μMLE]=σ2Var[N1i=1Nxi]=σ2N21i=1NVar[xi]=NN1σ2

所以: σ ^ 2 = 1 N − 1 ∑ i = 1 N ( x i − μ ) 2 \hat{\sigma}^{2}=\frac{1}{N-1}\sum\limits_ {i=1}^{N}(x_{i}-\mu)^{2} σ^2=N11i=1N(xiμ)2

2 多维情况

2.1 概率密度角度

x = ( x 1 x 2 ⋮ x p ) x=\left(\begin{array}{c}x_{1} \\ x_{2}\\ \vdots \\ x_{p}\end{array}\right) x=x1x2xp μ = ( μ 1 μ 2 ⋮ μ p ) \mu=\left(\begin{array}{c}\mu_{1} \\ \mu_{2}\\ \vdots \\ \mu_{p}\end{array}\right) μ=μ1μ2μp Σ = ( σ 11 σ 21 … σ 1 p σ 21 σ 22 … σ 2 p ⋮ ⋮ ⋮ ⋮ σ p 1 σ p 2 … σ p p ) \Sigma=\left(\begin{array}{c}\sigma_{11} \sigma_{21} \dots \sigma_{1p}\\ \sigma_{21} \sigma_{22} \dots \sigma_{2p}\\ \vdots \quad \vdots \quad \vdots \quad \vdots \\ \sigma_{p1} \sigma_{p2} \dots \sigma_{pp} \end{array}\right) Σ=σ11σ21σ1pσ21σ22σ2pσp1σp2σpp

多维高斯分布表达式为: p ( x ∣ μ , Σ ) = 1 ( 2 π ) p / 2 ∣ Σ ∣ 1 / 2 e − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) p(x|\mu,\Sigma)=\frac{1}{(2\pi)^{p/2}|\Sigma|^{1/2}}e^{-\frac{1}{2}(x-\mu)^{T}\Sigma^{-1}(x-\mu)} p(xμ,Σ)=(2π)p/2Σ1/21e21(xμ)TΣ1(xμ)
其中 x , μ ∈ R p , Σ ∈ R p × p x,\mu\in\mathbb{R}^{p},\Sigma\in\mathbb{R}^{p\times p} x,μRp,ΣRp×p Σ \Sigma Σ 为协方差矩阵,一般而言也是半正定矩阵。这里我们只考虑正定矩阵。首先我们处理指数上的数字,指数上的数字( ( x − μ ) T Σ − 1 ( x − μ ) (x-\mu)^{T}\Sigma^{-1}(x-\mu) (xμ)TΣ1(xμ)可以记为 x x x μ \mu μ 之间的马氏距离(当 Σ = I \Sigma=I Σ=I时,马氏距离=欧式距离)。对于对称的协方差矩阵可进行特征值分解, Σ = U Λ U T = ( u 1 , u 2 , ⋯   , u p ) d i a g ( λ i ) ( u 1 , u 2 , ⋯   , u p ) T = ∑ i = 1 p u i λ i u i T \Sigma=U\Lambda U^{T}=(u_{1},u_{2},\cdots,u_{p})diag(\lambda_{i})(u_{1},u_{2},\cdots,u_{p})^{T}=\sum\limits _{i=1}^{p}u_{i}\lambda_{i}u_{i}^{T} Σ=UΛUT=(u1,u2,,up)diag(λi)(u1,u2,,up)T=i=1puiλiuiT ,(其中 U U T = U T U = I , U = ( u 1 , u 2 , , ⋯   , u p ) p ∗ p U U^{T}=U^{T} U=I,U=(u_{1},u_{2},,\cdots,u_{p})_{p*p} UUT=UTU=I,U=(u1,u2,,,up)pp u i u_{i} ui实际上时协方差矩阵的特征向量)于是:

Σ − 1 = ∑ i = 1 p u i 1 λ i u i T \Sigma^{-1}=\sum\limits _{i=1}^{p}u_{i}\frac{1}{\lambda_{i}}u_{i}^{T} Σ1=i=1puiλi1uiT

Δ = ( x − μ ) T Σ − 1 ( x − μ ) = ∑ i = 1 p ( x − μ ) T u i 1 λ i u i T ( x − μ ) = ∑ i = 1 p y i 2 λ i \Delta=(x-\mu)^{T}\Sigma^{-1}(x-\mu)=\sum\limits _{i=1}^{p}(x-\mu)^{T}u_{i}\frac{1}{\lambda_{i}}u_{i}^{T}(x-\mu)=\sum\limits _{i=1}^{p}\frac{y{i}^{2}}{\lambda_{i}} Δ=(xμ)TΣ1(xμ)=i=1p(xμ)Tuiλi1uiT(xμ)=i=1pλiyi2

y i = ( x − μ ) T u i y_{i}=(x-\mu)^{T}u_{i} yi=(xμ)Tui,因此 y i y_{i} yi是一个实数
我们注意到 y i y_{i} yi x − μ x-\mu xμ 在特征向量 u i u_{i} ui 上的投影长度,因此上式子就是 Δ \Delta Δ 取不同值时的同心椭圆(例如p=2)。
p ( x ) = 1 ( 2 π ) p / 2 ∣ Σ ∣ 1 / 2 e − 1 2 Δ p(x)=\frac{1}{(2\pi)^{p/2}|\Sigma|^{1/2}}e^{-\frac{1}{2}\Delta} p(x)=(2π)p/2Σ1/21e21Δ。一维的概率密度曲线用二维坐标系表示,二维的概率密度函数就需要用三维坐标系表示,是一个曲面,向x轴投影后就很多椭圆,如下图。
在这里插入图片描述

2.2 局限性

下面我们看多维高斯模型在实际应用时的两个问题
Σ = ( σ 11 σ 21 … σ 1 p σ 21 σ 22 … σ 2 p ⋮ ⋮ ⋮ ⋮ σ p 1 σ p 2 … σ p p ) \Sigma=\left(\begin{array}{c}\sigma_{11} \sigma_{21} \dots \sigma_{1p}\\ \sigma_{21} \sigma_{22} \dots \sigma_{2p}\\ \vdots \quad \vdots \quad \vdots \quad \vdots \\ \sigma_{p1} \sigma_{p2} \dots \sigma_{pp} \end{array}\right) Σ=σ11σ21σ1pσ21σ22σ2pσp1σp2σpp
对于参数 Σ \Sigma Σ而言,参数有 p 2 p^{2} p2个,但是此矩阵时对称的,所以参数有(p+1)p/2个

  1. 参数过多:参数 Σ , μ \Sigma,\mu Σ,μ 的自由度为 O ( p 2 ) O(p^{2}) O(p2) 对于维度很高的数据其自由度太高,不利于计算。解决方案:高自由度的来源是 Σ \Sigma Σ p ( p + 1 ) 2 \frac{p(p+1)}{2} 2p(p+1) 个自由参数,可以假设其是对角矩阵,甚至在各向同性假设中假设其对角线上的元素都相同。前一种的算法有 Factor Analysis,后一种有概率 PCA(p-PCA) 。

  2. 第二个问题是单个高斯分布是单峰的,对有多个峰的数据分布不能得到好的结果。解决方案:高斯混合GMM 模型。

2.3 边缘概率和条件概率

下面对多维高斯分布的常用定理进行介绍。

我们记 x = ( x 1 , x 2 , ⋯   , x p ) T = ( x a , m × 1 , x b , n × 1 ) T , μ = ( μ a , m × 1 , μ b , n × 1 ) , Σ = ( Σ a a Σ a b Σ b a Σ b b ) , m + n = p x=(x_1, x_2,\cdots,x_p)^T=(x_{a,m\times 1}, x_{b,n\times1})^T,\mu=(\mu_{a,m\times1}, \mu_{b,n\times1}),\Sigma=\begin{pmatrix}\Sigma_{aa}&\Sigma_{ab}\\ \Sigma_{ba}&\Sigma_{bb}\end{pmatrix},m+n=p x=(x1,x2,,xp)T=(xa,m×1,xb,n×1)T,μ=(μa,m×1,μb,n×1),Σ=(ΣaaΣbaΣabΣbb)m+n=p,已知 x ∼ N ( μ , Σ ) x\sim\mathcal{N}(\mu,\Sigma) xN(μ,Σ)。求 p ( x a ) , p ( x b ) , p ( x a ∣ x b ) , p ( x b ∣ x a ) p(x_a),p(x_b),p(x_a|x_b),p(x_b|x_a) p(xa),p(xb),p(xaxb),p(xbxa)

首先是一个高斯分布的定理

定理:已知 x ∼ N ( μ , Σ ) , y ∼ A x + b x\sim\mathcal{N}(\mu,\Sigma), y\sim Ax+b xN(μ,Σ),yAx+b,那么 y ∼ N ( A μ + b , A Σ A T ) y\sim\mathcal{N}(A\mu+b, A\Sigma A^T) yN(Aμ+b,AΣAT)
证明: E [ y ] = E [ A x + b ] = A E [ x ] + b = A μ + b \mathbb{E}[y]=\mathbb{E}[Ax+b]=A\mathbb{E}[x]+b=A\mu+b E[y]=E[Ax+b]=AE[x]+b=Aμ+b V a r [ y ] = V a r [ A x + b ] = V a r [ A x ] = A ⋅ V a r [ x ] ⋅ A T Var[y]=Var[Ax+b]=Var[Ax]=A\cdot Var[x]\cdot A^T Var[y]=Var[Ax+b]=Var[Ax]=AVar[x]AT

下面利用这个定理得到 p ( x a ) , p ( x b ) , p ( x a ∣ x b ) , p ( x b ∣ x a ) p(x_a),p(x_b),p(x_a|x_b),p(x_b|x_a) p(xa),p(xb),p(xaxb),p(xbxa) 这四个量。

  1. x a = ( I m × m O m × n ) ) ( x a x b ) \left.x_{a}=\left(\mathbb{I}_{m \times m} \quad \mathbb{O}_{m \times n}\right)\right)\left(\begin{array}{l} x_{a} \\ x_{b} \end{array}\right) xa=(Im×mOm×n))(xaxb),代入定理中得到:
    E [ x a ] = ( I O ) ( μ a μ b ) = μ a \mathbb{E}[x_a]=\begin{pmatrix}\mathbb{I}&\mathbb{O}\end{pmatrix}\begin{pmatrix}\mu_a\\ \mu_b\end{pmatrix}=\mu_a E[xa]=(IO)(μaμb)=μa V a r [ x a ] = ( I O ) ( Σ a a Σ a b Σ b a Σ b b ) ( I O ) = Σ a a Var[x_a]=\begin{pmatrix}\mathbb{I}&\mathbb{O}\end{pmatrix}\begin{pmatrix}\Sigma_{aa}&\Sigma_{ab}\\ \Sigma_{ba}&\Sigma_{bb}\end{pmatrix}\begin{pmatrix}\mathbb{I}\\ \mathbb{O}\end{pmatrix}=\Sigma_{aa} Var[xa]=(IO)(ΣaaΣbaΣabΣbb)(IO)=Σaa
    所以 x a ∼ N ( μ a , Σ a a ) x_a\sim\mathcal{N}(\mu_a,\Sigma_{aa}) xaN(μa,Σaa)

  2. 同样的, x b ∼ N ( μ b , Σ b b ) x_b\sim\mathcal{N}(\mu_b,\Sigma_{bb}) xbN(μb,Σbb)

  3. 对于两个条件概率,我们引入三个量:
    x b ⋅ a = x b − Σ b a Σ a a − 1 x a x_{b\cdot a}=x_b-\Sigma_{ba}\Sigma_{aa}^{-1}x_a xba=xbΣbaΣaa1xa μ b ⋅ a = μ b − Σ b a Σ a a − 1 μ a \mu_{b\cdot a}=\mu_b-\Sigma_{ba}\Sigma_{aa}^{-1}\mu_a μba=μbΣbaΣaa1μa Σ b b ⋅ a = Σ b b − Σ b a Σ a a − 1 Σ a b \Sigma_{bb\cdot a}=\Sigma_{bb}-\Sigma_{ba}\Sigma_{aa}^{-1}\Sigma_{ab} Σbba=ΣbbΣbaΣaa1Σab
    特别的,最后一个式子叫做 Σ b b \Sigma_{bb} Σbb 的 Schur Complementary。可以看到:
    x b ⋅ a = ( − Σ b a Σ a a − 1 I n × n ) ( x a x b ) x_{b \cdot a}=\left(-\Sigma_{b a} \Sigma_{a a}^{-1} \quad \mathbb{I}_{n \times n}\right)\left(\begin{array}{l} x_{a} \\ x_{b} \end{array}\right) xba=(ΣbaΣaa1In×n)(xaxb)
    所以:
    E [ x b ⋅ a ] = ( − Σ b a Σ a a − 1 I n × n ) ( μ a μ b ) = μ b ⋅ a \mathbb{E}[x_{b\cdot a}]=\begin{pmatrix}-\Sigma_{ba}\Sigma_{aa}^{-1}&\mathbb{I}_{n\times n}\end{pmatrix}\begin{pmatrix}\mu_a\\\mu_b\end{pmatrix}=\mu_{b\cdot a} E[xba]=(ΣbaΣaa1In×n)(μaμb)=μba V a r [ x b ⋅ a ] = ( − Σ b a Σ a a − 1 I n × n ) ( Σ a a Σ a b Σ b a Σ b b ) ( − Σ a a − 1 Σ b a T I n × n ) = Σ b b ⋅ a Var[x_{b\cdot a}]=\begin{pmatrix}-\Sigma_{ba}\Sigma_{aa}^{-1}&\mathbb{I}_{n\times n}\end{pmatrix}\begin{pmatrix}\Sigma_{aa}&\Sigma_{ab}\\ \Sigma_{ba}&\Sigma_{bb}\end{pmatrix}\begin{pmatrix}-\Sigma_{aa}^{-1}\Sigma_{ba}^T\\ \mathbb{I}_{n\times n}\end{pmatrix}=\Sigma_{bb\cdot a} Var[xba]=(ΣbaΣaa1In×n)(ΣaaΣbaΣabΣbb)(Σaa1ΣbaTIn×n)=Σbba 利用这三个量可以得到 x b = x b ⋅ a + Σ b a Σ a a − 1 x a x_b=x_{b\cdot a}+\Sigma_{ba}\Sigma_{aa}^{-1}x_a xb=xba+ΣbaΣaa1xa。因此: E [ x b ∣ x a ] = μ b ⋅ a + Σ b a Σ a a − 1 x a \mathbb{E}[x_b|x_a]=\mu_{b\cdot a}+\Sigma_{ba}\Sigma_{aa}^{-1}x_a E[xbxa]=μba+ΣbaΣaa1xa V a r [ x b ∣ x a ] = Σ b b ⋅ a Var[x_b|x_a]=\Sigma_{bb\cdot a} Var[xbxa]=Σbba 这里同样用到了定理。
    上述推导中缺少Xb.a 与Xa的独立性证明,具体证明步骤如下:
    左侧是Mx和Nx相互独立的充要条件证明,后边使用左侧的结论
    左侧是Mx和Nx相互独立的充要条件证明,后边使用左侧的结论。以上证明中x为服从高斯分布的随机变量,M,N均为矩阵,Mx,Nx也服从高斯分布,其中M,N为矩阵。
    Note:

  • 一般情况下两个随机变量之间独立一定不相关,不相关不一定独立(也就是独立的概念更“苛刻”一点,不相关稍微“弱”一点)
  • 如果两个随机变量均服从高斯分布,那么“不相关”等价于“独立”
  1. 同样: x a ⋅ b = x a − Σ a b Σ b b − 1 x b x_{a\cdot b}=x_a-\Sigma_{ab}\Sigma_{bb}^{-1}x_b xab=xaΣabΣbb1xb μ a ⋅ b = μ a − Σ a b Σ b b − 1 μ b \mu_{a\cdot b}=\mu_a-\Sigma_{ab}\Sigma_{bb}^{-1}\mu_b μab=μaΣabΣbb1μb Σ a a ⋅ b = Σ a a − Σ a b Σ b b − 1 Σ b a \Sigma_{aa\cdot b}=\Sigma_{aa}-\Sigma_{ab}\Sigma_{bb}^{-1}\Sigma_{ba} Σaab=ΣaaΣabΣbb1Σba
    所以: E [ x a ∣ x b ] = μ a ⋅ b + Σ a b Σ b b − 1 x b \mathbb{E}[x_a|x_b]=\mu_{a\cdot b}+\Sigma_{ab}\Sigma_{bb}^{-1}x_b E[xaxb]=μab+ΣabΣbb1xb V a r [ x a ∣ x b ] = Σ a a ⋅ b Var[x_a|x_b]=\Sigma_{aa\cdot b} Var[xaxb]=Σaab

2.4 联合概率分布

下面利用上边四个量,求解线性模型:

已知: p ( x ) = N ( μ , Λ − 1 ) , p ( y ∣ x ) = N ( A x + b , L − 1 ) p(x)=\mathcal{N}(\mu,\Lambda^{-1}),p(y|x)=\mathcal{N}(Ax+b,L^{-1}) p(x)=N(μ,Λ1),p(yx)=N(Ax+b,L1),求解: p ( y ) , p ( x ∣ y ) p(y),p(x|y) p(y),p(xy)

解:令 y = A x + b + ϵ , ϵ ∼ N ( 0 , L − 1 ) y=Ax+b+\epsilon,\epsilon\sim\mathcal{N}(0,L^{-1}) y=Ax+b+ϵ,ϵN(0,L1),所以 E [ y ] = E [ A x + b + ϵ ] = A μ + b \mathbb{E}[y]=\mathbb{E}[Ax+b+\epsilon]=A\mu+b E[y]=E[Ax+b+ϵ]=Aμ+b V a r [ y ] = A Λ − 1 A T + L − 1 Var[y]=A \Lambda^{-1}A^T+L^{-1} Var[y]=AΛ1AT+L1,因此: p ( y ) = N ( A μ + b , L − 1 + A Λ − 1 A T ) p(y)=\mathcal{N}(A\mu+b,L^{-1}+A\Lambda^{-1}A^T) p(y)=N(Aμ+b,L1+AΛ1AT)
引入 z = ( x y ) z=\left(\begin{array}{l}x \\ y\end{array}\right) z=(xy),我们可以得到 C o v [ x , y ] = E [ ( x − E [ x ] ) ( y − E [ y ] ) T ] Cov[x,y]=\mathbb{E}[(x-\mathbb{E}[x])(y-\mathbb{E}[y])^T] Cov[x,y]=E[(xE[x])(yE[y])T]。对于这个协方差可以直接计算: Cov ⁡ ( x , y ) = E [ ( x − μ ) ( A x − A μ + ϵ ) T ] = E [ ( x − μ ) ( x − μ ) T A T ] = Var ⁡ [ x ] A T = Λ − 1 A T \operatorname{Cov}(x, y)=\mathbb{E}\left[(x-\mu)(A x-A \mu+\epsilon)^{T}\right]=\mathbb{E}\left[(x-\mu)(x-\mu)^{T} A^{T}\right]=\operatorname{Var}[x] A^{T}=\Lambda^{-1} A^{T} Cov(x,y)=E[(xμ)(AxAμ+ϵ)T]=E[(xμ)(xμ)TAT]=Var[x]AT=Λ1AT注意到协方差矩阵的对称性,所以 p ( z ) = N ( ( μ A μ + b ) , ( Λ − 1 Λ − 1 A T A Λ − 1 L − 1 + A Λ − 1 A T ) ) p(z)=\mathcal{N}(\left(\begin{array}{c}\mu \\ A \mu+b\end{array}\right),\left(\begin{array}{cc}\Lambda^{-1} & \Lambda^{-1} A^{T} \\ A \Lambda^{-1} & L^{-1}+A \Lambda^{-1} A^{T}\end{array}\right)) p(z)=N((μAμ+b),(Λ1AΛ1Λ1ATL1+AΛ1AT))。根据之前2.3的公式,我们可以得到: E [ x ∣ y ] = μ + Λ − 1 A T ( L − 1 + A Λ − 1 A T ) − 1 ( y − A μ − b ) \mathbb{E}[x|y]=\mu+\Lambda^{-1}A^T(L^{-1}+A\Lambda^{-1}A^T)^{-1}(y-A\mu-b) E[xy]=μ+Λ1AT(L1+AΛ1AT)1(yAμb)

V a r [ x ∣ y ] = Λ − 1 − Λ − 1 A T ( L − 1 + A Λ − 1 A T ) − 1 A Λ − 1 Var[x|y]=\Lambda^{-1}-\Lambda^{-1}A^T(L^{-1}+A\Lambda^{-1}A^T)^{-1}A\Lambda^{-1} Var[xy]=Λ1Λ1AT(L1+AΛ1AT)1AΛ1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值