人工智能测试
文章平均质量分 91
霍格沃兹软件测试开发
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Dify vs Coze:谁是最终的AI工作流解决方案?
本文从架构设计、核心功能到部署运维,系统对比Dify与Coze两大AI开发平台。Dify以一体化集成见长,适合快速构建生产级应用;Coze采用模块化架构,在多Agent协同上更具优势。为不同技术背景和业务场景的团队提供选型参考。原创 2025-11-06 23:20:09 · 443 阅读 · 0 评论 -
掌握Dify工作流:跳槽升级薪资40%的关键因素!
本文分享作者通过掌握Dify工作流实现薪资40%增长的实战经验。从环境搭建到企业级应用开发,详细介绍了如何将AI技术转化为解决实际业务问题的能力,为技术人职业发展提供可复制的路径。原创 2025-11-05 20:25:15 · 681 阅读 · 0 评论 -
优化RAG检索:别只关注模型,关键在于这三方面测试!
本文从测试开发视角,解析RAG检索模块的五大优化方向:向量化模型、文本分块、检索参数、混合检索及知识库更新。通过建立自动化评测基线与回归验证体系,确保优化效果可量化、可追溯,让测试成为RAG系统迭代的关键支撑。原创 2025-11-05 19:52:08 · 397 阅读 · 0 评论 -
掌握Coze工作流,这项技能让我在公司脱颖而出!
本文分享如何通过掌握Coze工作流实现职场跃迁。作为连接业务与技术的桥梁,这一技能能高效解决企业自动化需求。文章包含从环境搭建到实战案例的完整教程,助你构建独特竞争力,成为团队中的稀缺人才。原创 2025-11-05 17:13:46 · 605 阅读 · 0 评论 -
从工具到伙伴:深入解析 AI Agent 和 Agentic AI 的核心区别
本文解析AI Agent与Agentic AI的核心差异:前者按指令执行任务,适合自动化测试等场景;后者能自主规划、反思优化,实现智能决策。这一认知转变将推动测试开发从效率工具迈向智能化协作。原创 2025-11-05 15:48:19 · 637 阅读 · 0 评论 -
MCP创建AI代理的五大最佳实践
本文介绍构建企业级AI Agent的五大MCP最佳实践,涵盖任务模块拆分、工具链选型、设计模式应用、状态管理和安全机制。通过统一调度与多渠道接入,实现智能体在复杂业务场景中的高效、可控落地。原创 2025-11-04 21:01:23 · 511 阅读 · 0 评论 -
2025年,告别手动数据爬取,Coze AI Agent助你全程无忧!
本文介绍如何利用Coze AI Agent构建智能数据采集方案,实现从网站抓取到数据清洗、存储的全流程自动化。通过可视化工作流设计,该方案可将人工日均处理量从不足百条提升至无限制自动采集,大幅提升数据工作效率。原创 2025-11-04 20:57:23 · 516 阅读 · 0 评论 -
基于Dify创建可复用测试用例工厂
本文介绍如何利用Dify平台搭建智能测试用例工厂,通过自然语言需求自动生成结构化测试用例。该方法将传统耗时数天的用例编写工作压缩至数小时,显著提升测试覆盖率和维护效率,实现测试开发的智能化转型。原创 2025-11-04 20:48:30 · 821 阅读 · 0 评论 -
Cypress 插件实战:让测试更稳定,不再“偶尔掉链子”
本文分享如何通过自定义Cypress插件解决测试不稳定的痛点。插件可实现智能等待、数据预处理等能力,替代传统硬性等待,有效减少偶发性失败,提升测试效率和可维护性。文内包含具体实现方法与最佳实践。原创 2025-11-04 17:46:06 · 136 阅读 · 0 评论 -
借助 Dify 实现自动化工作流,每天节省3小时
本文分享如何利用Dify搭建自动化工作流,实现客服应答、文档处理与代码生成等日常任务的智能化。通过具体案例详解搭建步骤与性能优化技巧,该方案每天为我节省约3小时,有效提升开发效率。原创 2025-10-16 12:55:03 · 1072 阅读 · 0 评论 -
轻松拖拽:用 Dify 搭建企业级 AI 应用
本文介绍了开源平台Dify如何通过可视化工作流简化AI应用开发。涵盖从Docker快速部署、模型配置到构建智能客服与知识库系统的全流程,并结合企业级安全与性能优化方案,展示其在实际业务场景中的落地价值。原创 2025-10-16 12:21:22 · 697 阅读 · 0 评论 -
完整项目实战:使用 Playwright MCP 构建网页交互 AI 助手教程
这篇教程完整展示了如何构建一个智能网页操作助手。通过集成Playwright与MCP协议,实现了用自然语言指令驱动浏览器自动化的完整解决方案,涵盖系统架构、核心实现和部署流程,为开发智能网页助手提供了实用指南。原创 2025-10-14 23:59:47 · 1110 阅读 · 0 评论 -
新手指南:通过 Playwright MCP Server 为 AI Agent 实现浏览器自动化能力
本文手把手教你如何为AI助手安装浏览器自动化能力。通过配置Playwright MCP Server,你的AI将能实际操作网页——自动填表、抓取数据、执行任务。从环境搭建到实战案例,带你体验从知识问答到主动执行的技术升级。原创 2025-10-14 22:57:16 · 547 阅读 · 0 评论 -
深入剖析:Playwright MCP Server 的工作机制与性能优化策略
本文深入解析Playwright MCP Server的三层架构:协议层负责AI指令通信,执行引擎操控浏览器,会话管理层维护状态。重点分享了性能优化方案,包括浏览器实例池化、并行执行和操作序列优化,并提供了确保系统稳定运行的错误处理、超时控制等最佳实践。原创 2025-10-13 23:46:47 · 556 阅读 · 0 评论 -
探索Playwright MCP和Claude的协作:智能网页操作新境界
如今,只需用自然语言对AI说“帮我找近三个月AI代理的最新论文,下载PDF并整理成表格”,它就能自动打开浏览器,访问学术网站,完成搜索、筛选、下载等一系列操作。这背后是 Playwright MCP Server 与 Claude 的深度结合——相当于为 Claude 这颗“智慧大脑”装上了能够精准操控浏览器的“灵巧双手”。本文将一步步教你搭建并优化这两个工具之间的协作桥梁,打造一个真正能自主处理网页任务的智能助手。原创 2025-10-09 17:42:24 · 865 阅读 · 0 评论 -
Playwright与AI智能体的网页爬虫创新应用
厌倦重复测试与低效爬虫?本课程带您掌握Playwright自动化工具,并融合AI大模型构建智能体,实现网页自主分析、决策与数据提取,完成从脚本执行到智能架构的能力跃升。原创 2025-09-28 22:30:09 · 1073 阅读 · 0 评论 -
深入解析Playwright MCP引领AI智能体革命
想象一下,只需对AI说“帮我测试网站登录”,它就能自动完成所有操作——这正是Playwright MCP技术带来的变革。它让AI不仅能生成代码,更能直接操作浏览器执行任务,实现真正的智能自动化。本文将带你了解这项技术如何重塑测试、数据采集和办公自动化,并提供快速上手指南。原创 2025-09-24 22:57:21 · 772 阅读 · 0 评论 -
Playwright MCP 实现小红书全自动发布的全流程指南
本文为小红书运营者带来一份实用指南:通过Playwright MCP技术,只需一次手动登录即可实现图文自动发布。教程从环境配置到完整脚本编写,手把手教你搭建稳定高效的无人值守发布系统,彻底解决登录验证难题。原创 2025-09-23 15:30:13 · 953 阅读 · 0 评论 -
Playwright UI自动化实战速成指南
厌倦了Selenium的漫长等待和脆弱选择器?Playwright用智能等待、精准定位和网络拦截四大秘籍,帮你写出又快又稳的自动化脚本。本文通过真实代码示例,带你快速上手这款现代Web测试利器。原创 2025-09-23 15:03:38 · 616 阅读 · 0 评论 -
AI大模型入门第四篇:借助RAG实现精准用例自动生成!
测试开发是否总被用例维护、漏测风险和文档滞后困扰?RAG技术让AI实时解读最新需求,自动生成精准测试用例,动态对齐线上数据,节省70%维护成本,助你告别手工“填坑”,高效应对需求变化。原创 2025-09-19 22:48:55 · 831 阅读 · 0 评论 -
轻松掌控Cursor,让AI成为你的代码助手
本文通过“安装配置-核心功能-高阶技巧”三步实战,带你快速掌握Ctrl+K生成代码、Ctrl+L对话编程等核心能力,助你将重复劳动交给AI,自己专注于设计与创新。原创 2025-09-19 22:34:58 · 615 阅读 · 0 评论 -
打造高效极简工作流
本文教你如何利用Ollama和Python工具,仅用消费级GPU或CPU,在一小时内完成大模型的个性化微调。从准备数据、转换格式到训练测试,手把手带你打造懂专业、仿风格的专属模型。原创 2025-09-16 08:00:00 · 1038 阅读 · 0 评论 -
Playwright MCP浏览器自动化指南
本文教你如何通过Playwright MCP让AI直接操作浏览器,自动运行和调试代码,无需手动切换界面。只需简单配置,即可用自然语言指挥AI完成页面操作、问题排查与自主修复,真正实现自动化高效开发。原创 2025-09-14 16:07:41 · 1293 阅读 · 0 评论 -
快速掌握Dify+Chrome MCP:打造网页操控AI助手
本文教你如何快速搭建一个能操作浏览器的AI助手:通过Dify和Chrome MCP结合,只需三步配置,即可实现自动填表、数据抓取和网页操控,无需编写代码,用自然语言就能指挥AI完成各类网页任务。原创 2025-09-14 15:56:21 · 763 阅读 · 0 评论 -
新手轻松上手:零基础搭建Qwen智能体指南
本文详细介绍了如何从零开始搭建Qwen-Agent智能体,涵盖环境配置、模型部署、工具调用及多Agent协作等关键步骤,帮助无AI经验的开发者快速上手,实现从环境准备到智能体运行的完整流程。原创 2025-09-13 08:00:00 · 992 阅读 · 0 评论 -
小白必看:AI智能体零基础搭建全攻略!
这篇教程手把手带你从零搭建第一个AI智能体,无需技术背景。从注册账号、获取API密钥,到在可视化平台创建专属助手并添加测试用例生成功能,每一步都配有详细说明和贴心提示。跟着操作,你也能轻松拥有一个实用的AI测试助手!原创 2025-09-11 18:38:16 · 1023 阅读 · 0 评论 -
AI智能体初学指南:从基础概念到实现首个可运行Agent
AI智能体是可以自主感知、决策和执行任务的人工智能系统,像一个全栈测试工程师,能独立完成从用例设计到报告生成的整个流程。它具备规划、工具调用和记忆管理等核心能力,可自动生成用例、编写脚本、分析缺陷,显著提升测试效率。建议从实际小项目入手,逐步掌握智能体开发。原创 2025-09-09 19:28:33 · 312 阅读 · 0 评论 -
大模型部署实战:四大工具赋能个人探索与企业级应用
发愁大模型部署?本文介绍了五款主流工具,覆盖从个人到企业的各种需求:Ollama适合本地快速体验,LM Studio提供图形化界面,llama.cpp专为低配设备优化,vLLM满足企业高性能场景,TGI则深度集成Hugging Face生态。文末还有实用对比指南,帮你根据实际需求轻松选型。原创 2025-09-08 21:14:51 · 1036 阅读 · 0 评论 -
让AI更了解你:掌握提示词与上下文工程的核心策略
提示词(Prompt)是你与AI交互的指令,决定了回答的质量和方向。提示词工程则是一门优化提示词的艺术与科学,通过特定方法(如角色扮演、思维链等)提升输出准确性和适用性。上下文工程进一步管理多轮对话,维持会话连贯与深度。掌握这三者,才能充分发挥大语言模型的能力。原创 2025-09-06 20:51:28 · 785 阅读 · 0 评论 -
Browser Use:打造你的浏览器自动化助手
你是否曾希望用简单的一句话就能让浏览器自动填表、抓数据或做测试?Browser Use 让这成为现实。它结合了语言模型的智能和传统自动化的稳定,能听懂自然语言指令,自己规划步骤,还能应对网页变动和错误。无论是开发者还是普通用户,都能用它高效完成日常操作,省时省力。安装简单,写行指令就能马上体验。原创 2025-09-06 19:53:35 · 784 阅读 · 0 评论 -
Playwright携手MCP:AI智能体实现自主化UI回归测试
MCP 协议使得 AI 能够通过 Playwright 操作浏览器,其中快照生成技术将页面状态转化为 LLM 可理解的文本,成为驱动自动化测试的关键。该方式适用于探索性测试和快速验证,但目前仍面临快照信息缺失、元素定位不稳定、成本高、复杂场景适应性差以及结果确定性不足等挑战。人机协同被认为是未来更可行的方向,AI 负责执行固定流程,人类则专注策略与验证。原创 2025-09-06 16:20:07 · 737 阅读 · 0 评论 -
Coze平台指南(3):核心功能-创建智能体与设计角色
Coze 智能体是由大语言模型驱动,通过提示词设定角色,并借助知识库、插件和工作流扩展能力,以执行特定任务的AI助手。对测试工程师而言,精心设计的智能体可显著提升测试效率与质量,关键是要准确理解测试需求,并将其转化为智能体的角色设定和功能配置。建议进一步学习知识库与工作流,以深化应用。原创 2025-09-06 16:10:00 · 711 阅读 · 0 评论 -
Coze平台指南(2):开发环境的搭建与配置
Coze(扣子)是字节跳动开源的AI智能体开发平台,包含开发工具和运维系统,支持本地部署且硬件要求低。本文将手把手带你完成Coze开发环境的搭建与配置,让你能快速开始本地化的AI智能体开发原创 2025-09-02 22:01:32 · 1031 阅读 · 0 评论 -
构建可扩展的 AI 应用:LangChain 与 MCP 服务的集成模式
本文以LangChain和文件系统服务器为例,详细介绍了MCP的配置、工具创建及调用流程,展现了其“即插即用”的模块化优势,为构建复杂AI应用提供了强大支持。原创 2025-09-02 21:50:37 · 584 阅读 · 0 评论 -
Coze平台指南 第1章:平台概览与测试应用展望
Coze是字节跳动推出的AI智能体开发平台,支持低代码构建自动化工作流和智能助手。其核心特点包括可视化开发、多模型支持、知识库增强和丰富插件生态,可快速部署至多平台。在测试领域,Coze能够自动生成用例、分析缺陷、集成CI/CD和管理测试数据,帮助测试工程师提升效率与覆盖率,适应智能化测试趋势。原创 2025-09-01 21:51:10 · 897 阅读 · 0 评论 -
从零开始搭建AI应用:Coze与Dify对比指南,助你轻松抉择
Coze和Dify是当前主流的AI应用开发平台,两者定位和特点差异显著。Coze适合快速搭建聊天机器人,尤其适合非技术人员和需要快速集成的场景;Dify则更侧重高度定制和企业级需求,支持私有部署和复杂工作流。选择时应根据项目需求、技术能力及数据控制要求综合考虑,没有绝对优劣,关键看是否契合实际场景。原创 2025-09-01 19:47:41 · 538 阅读 · 0 评论 -
Dify平台:Agent开发初学者指南
本文手把手教你如何在Dify平台快速搭建AI智能体,无需深厚编程基础。从注册配置、模型选择到提示词编写,以创建会议纪要助手为例,详细介绍每一步操作。还涵盖工具调用、知识库集成等进阶功能,助你轻松开发实用AI应用。原创 2025-08-29 15:46:47 · 843 阅读 · 0 评论 -
初识LightRAG:轻量级知识图谱框架指南
LightRAG创新融合知识图谱与向量检索,显著提升检索精度和可解释性。该框架轻量高效,支持多模态数据处理,提供简洁API便于快速集成。通过结构化关系补充分散语义,有效解决传统RAG系统的关系缺失与语义模糊问题。原创 2025-08-29 15:29:50 · 321 阅读 · 0 评论 -
Coze与Dify深度对比:AI应用开发最佳利器的选择指南
Coze与Dify两大开源AI平台各有特色:Dify采用Python一体化架构,适合快速开发部署,社区成熟;Coze基于Go微服务设计,扩展灵活但部署复杂。选择需结合团队技术栈,Python系选Dify追求效率,Go系选Coze注重定制。两者都能显著降低AI应用开发门槛。原创 2025-08-29 15:17:25 · 629 阅读 · 0 评论 -
RAG技术工作流程详细指南
本文解析RAG(检索增强生成)技术的工作流程与核心组件,涵盖知识库预处理、实时查询处理和增强生成三阶段,介绍优化策略、应用场景及最佳实践,为企业构建高效AI问答系统提供全面指导。原创 2025-08-28 20:47:22 · 849 阅读 · 0 评论
分享