测试开发实战 | Docker+Jmeter+InfluxDB+Grafana 搭建性能监控平台

本文为霍格沃兹测试学院学院学员课程学习系列笔记《电商系统的性能测试实战》第三篇,系统进阶学习文末加群。

1. 为什么要搭建性能监控平台?

1.1 需求背景

在用 Jmeter 获取性能测试结果的时候, Jmeter 本身带有聚合报告如下图所示:

这个报告有几个很明显的缺点:

  • 只能自己看,无法实时共享;
  • 报告信息的展示比较简陋单一,不直观;

1.2 需求方案

为了解决上述问题,必须要请出了 InfluxDB + Grafana :

  • InfluxDB :持续型数据库,有时间戳组件,以时间的形式去存储数据
  • Grafana :一款采用 Go 语言编写的开源应用,主要用于大规模指标数据的可视化展现,是网络架构和应用分析中最流行的时序数据展示工具

简单总结起来就是:
将 Jmeter 的数据导入 InfluxDB ,再用 Grafana 从 InfluxDB 中获取数据并以特定的模板进行展示

本次实践是用目前较为流行的 Docker 的方式进行部署,也推荐使用,作为一名普通的测试,会了点 Docker 的皮毛就已经爱不释手了,对于头疼的环境问题真的太好用了,强烈推荐。

2、性能监控平台部署实践

2.1 Docker环境

本文的重点并不是介绍 Docker,所以不了解的小伙伴需要自己去学习一下基本的安装和操作,可参考之前发送的 Docker 文章 30。

2.2 InfluxDB部署

1)首先去下载InfluxDB的镜像,下载很简单,直接pull就好,默认为下载最新的镜像:

$ docker pull influxdb

目前最新的influxdb不支持网页端的查看,仅可用命令行的形式,不过没有什么影响,如果真的想要有网页端的显示的话可以尝试下载较前的镜像:tutum/influxdb

2)启动一个容器,并将端口 8083 和 8086 映射出来,如果用的是 tutum/influxdb 镜像,在访问8083端口时就可以看到网页端的展示,我这里用的是最新的,所以就没有啦:

$ docker run -d --name jmeter-influx -p 8083:8083 -p 8086:8086 influxdb

3)进入容器内部,创建名为jmeter的数据库:

进入 jmeter-influx 容器

$ docker exec -it jmeter-influx bash
root@517f57017d99:/#

进入 influx , create database jmeter 创建名为 jmeter 的数据库, show databases 命令查看数据库创建成功

root@517f57017d99:/# influx
Connected to http://localhost:8086 version 1.7.10
InfluxDB shell version: 1.7.10
> create database jmeter
> show databases
name: databases
name
----
_internal
jmeter

4)使用 J meter 库, select 查看数据,这个时候应该是没有数据的:

$ > use jmeter
Using database jmeter
> select * from jmeter
>

2.3 Jmeter脚本设置

这里需要创建一个登录注册场景的 Jmeter 脚本,往期文章有发布,本次就以此来进行测试结果演示。具体可参考之前发送的公众号文章。文章末尾的「往期回顾」第二篇文章即可阅读。

1)想要将 jmeter 的测试数据导入 influxDB ,就需要在 Jmeter 中使用 Backend Listener 配置

先看一下配置好的 Backend Listener :

2)主要配置说明:
implementation 选择 influxdb 所对应的:

  • influxdbUrl:需要改为自己influxdb的部署ip和映射端口,我这里是部署在本地,所以就是localhost,端口是容器启动时映射的8086端口,db后面跟的是刚才创建的数据库名称
  • application:可根据需要自由定义,只是注意后面在 grafana 中选对即可
  • measurement:表名,默认是 jmeter ,也可以自定义
  • summaryOnly:选择true的话就只有总体的数据,false会将每个transaction都分别记录

3)运行验证
运行 Jmeter 脚本,然后再次在 influxdb 中查看数据,发现类似下面的数据说明输入导入成功:

2.4、Grafana部署

1)首先我们需要下载grafana的镜像:

$ docker pull grafana/grafana

2)启动一个grafana容器,将3000端口映射出来:

$ docker run -d --name grafana -p 3000:3000 grafana/grafana

3)网页端访问locahost:3000验证部署成功

4)选择添加数据源

5)找到并选择 influxdb :

6)配置数据源

数据源创建成功时会有绿色的提示:

7)导入模板

模板导入分别有以下3种方式:

  • 直接输入模板id号
  • 直接上传模板json文件
  • 直接输入模板json内容

8)下载模板,在grafana的官网下载我们需要的展示模板

Grafana Labs

Grafana Dashboards - discover and share dashboards for Grafana.14

Grafana.com provides a central repository where the community can come together to discover and share dashboards.

下面这两个是我尝试过的模板:

9)导入模板,我这里选择的是导入json文件的方式,导入后如下,配置好模板名称和对应的数据源,然后 import 即可

10)展示设置,首先选择我们创建的application

注意: 如果我们修改过表名,也就是在jmeter的Backend Listener的measurement配置(默认为jmeter),这个时候就需要去设置中进行修改(我这里使用的就是默认的,所以无需修改):

3. 效果展示及推荐学习

经过一系列的奋斗之后,该到了我们检验成果的时候了。使用 Docker + JMeter + InfluxDB + Grafana 到底可以搭建怎样的性能监控平台呢?相比较 JMeter 自带的监控平台,我们搭建的性能监控平台究竟有什么优势呢?接下来就是展示成果的时候啦!

Appium 官方说明文档:
http://appium.io/docs/en/writing-running-appium/finding-elements/ 2
http://appium.io/docs/en/commands/element/find-elements/

获取更多相关资料:请添加vx,ceshiren001
https://qrcode.ceba.ceshiren.com/link?name=article&project_id=qrcode&from=csdn&timestamp=1654758231&author=MM

pytest与Grafana之间没有直接的关联。pytest是一个Python的测试框架,用于编写和运行自动化测试脚本。而Grafana是一个开源的数据可视化工具,用于展示和监控各种数据源的指标和图表。 如果你想在pytest中使用Grafana来展示测试结果和性能指标等数据,你可以通过使用pytest插件来实现。有一些pytest插件可以与Grafana进行集成,例如pytest-html和pytest-influxdb等。pytest-html插件可以生成一个漂亮的HTML测试报告,而pytest-influxdb插件可以将测试结果和性能指标写入InfluxDB数据库,然后可以利用Grafana连接到InfluxDB并展示数据。 你可以通过查看pytest插件官方文档和Grafana文档来了解更多关于如何使用这些插件和配置Grafana的信息。 [2] 另外,如果你想了解更多关于pytest和Grafana的具体用法和配置,你可以参考一些开源项目和社区讨论,如霍格沃兹测试开发学社区和测试人社区。这些社区和论坛上有很多关于pytest和Grafana的教程、示例和讨论,可以帮助你深入了解和应用这些工具。 总结起来,pytest和Grafana是两个独立的工具,但可以通过适当的插件和配置来实现它们之间的集成,以便展示和监控测试结果和性能指标等数据。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [实战 | Docker+Jmeter+InfluxDB+Grafana 搭建性能监控平台](https://blog.csdn.net/weixin_46635091/article/details/122835654)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *3* [agent-python-pytest:与PyTest的框架集成](https://download.csdn.net/download/weixin_42144554/18788921)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值