tensorflow
陈华杰
数学与编程的热爱者
展开
-
TensorFlow基础教程:tensorboard训练过程可视化
TensorFlow自带一个非常好的可视化工具tensorboard,可以从极客学院查看它的详细介绍。tensorboard界面,可视化训练过程。 使用tensorboard需要首先定义好需要观察的tensor的名字,以及运算过程的名字。#在声明张量时,输入参数name即为显示在tensorboard上张量的名字x = tf.placeholder(tf.float32,原创 2018-01-24 16:56:43 · 12402 阅读 · 1 评论 -
TensorFlow基础教程:搭建简单的DNN实现手写数字识别
利用TensorFlow逐步实现DNN算法,并用MNIST数据集测试。 TensorFlow:官网 MNIST介绍:数据集 TensorFlow版本1.4.0 python版本>3.51.载入MNIST数据集from tensorflow.examples.tutorials.mnist import input_datamnist = input_data.re原创 2018-01-24 12:03:00 · 2752 阅读 · 0 评论 -
TensorFlow基础教程:搭建卷积神经网络CNN
手把手教你使用TensorFlow搭建卷积神经网络 TensorFlow版本1.4.0 python版本>3.5.0卷积神经网络的原理大家可以参考这篇文章本教程使用LeNet网络对MNIST数据集进行分类。LeNet基本结构如下 输入—>卷积层C1—>池化层P1—>卷积层C2—>池化层P2—>全连接层F1—>全连接层F2(输出)输入参数 输入图像大原创 2018-01-28 10:58:32 · 1971 阅读 · 0 评论 -
TensorFlow基础教程:模型持久化(模型保存与读取)
TensorFlow可以保存训练过的模型,不仅在训练过程中断后,可以继续上次训练过程;还可以进行迁移学习,在别人的训练的模型基础上训练自己的模型。可谓十分方便。TensorFlow保存模型checkpoint后生成以下文件: |—checkpoint |—model_name.data-00000-of-00001 |—model_name.index |—model原创 2018-01-24 19:37:32 · 759 阅读 · 0 评论 -
TensorFlow基础教程:搭建循环神经网络RNN
使用TensorFlow搭建循环神经网络 TensorFlow版本1.4.0 Python版本>3.5.0 循环神经网络RNN的原理可以参考这篇文章。本教程搭建的网络结构包含LSTM和一个全连接层网络结构图如下: 输出—>LSTM—>全连接层—>输出1.载入MNIST数据集import tensorflow as tf...原创 2018-05-17 21:59:12 · 1336 阅读 · 4 评论 -
pytorch与tensorflow API速查表
pytorch与tensorflow API速查表方法名称pytrochtensorflownumpy裁剪torch.clamp(x, min, max)tf.clip_by_value(x, min, max)np.clip(x, min, max)取最大值torch.max(x, dim)[0]tf.max(x, axis)np.max(x, axi...原创 2019-04-20 11:47:19 · 7341 阅读 · 0 评论