生命主动推理的数学范畴描述

本文探讨了主动推理理论,尤其是围绕自由能原理,强调了贝叶斯推理在感知和行动中的核心作用。通过贝叶斯透镜和统计游戏的概念,文章揭示了复杂系统如何通过反演和组合实现动态优化。后续将深入动态语义和行动执行的研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

4a373c7025d15e68000b7b92d9235472.jpeg

来源:CreateAMind

785674eaf8741290451fb2fdea3bfe7a.jpeg

https://arxiv.org/abs/2109.04461

简介:

那些我们可以归类为“控制论的”、“适应性的”或“活的”的系统都显示出一个基本的属性 :它们抵制将它们推离目标或使它们的存在不可持续的扰动。为了做到这一点,这样的系统能够以某种方式感知它们当前的状态(通过感知)并做出适当的反应(通过行动)。在第一部分的系列论文中,我们试图为足以描述这种系统的主动推理理论提供新的组成基础,特别关注在组成神经科学和人工生命社区中被称为自由能原理的框架[1],我们试图使其结构精确。

主动推理的一个核心特征是使用被称为贝叶斯推理的统计过程,它提供了一种方法,通过这种方法,系统可以反转一个统计模型(比如,原因如何产生观察结果),以便形成关于观察到的数据的原因的信念。很容易看出这样一个推断原因的过程是如何被理解为一个感知过程的,但是主动推理的中心法则是,感知和行动都可以被呈现为贝叶斯推理的问题,行动对感知来说是“双重的” :一个系统不是改变它的内部状态(它对原因的信念)来更好地匹配它的观察,而是改变外部状态(世界的状态),以便它期望或希望获得的观察。在自由能框架中,感知和行动都是通过优化一个单一的量——自由能而产生的。

这种优化过程,以及更一般的感知和行动,是内在的动态过程。在本系列的第一篇论文中,我们暂时把动力学放在一边,奠定统计学基础,描述由控制论系统实例化的生成模型的组成结构及其反演代数。这一代数通过我们的贝叶斯透镜概念得以形式化,我们引入贝叶斯透镜来描述贝叶斯反演固有的双向结构,借鉴了从经济游戏[2]、数据库[3]和机器学习者[4]构建双向系统的“透镜”模式。

这种透镜结构不仅仅是为了组织的目的:我们证明了复合或“层次”统计模型的反演是由透镜组成规则等价给出的(几乎相等)。这意味着包含复杂复合模型的控制论系统可以简单地反演其模型的每个组成因素,然后组合这些反演,以获得整体的反演。反过来,这解释了大脑中的分层系统(如视觉皮层的大部分)可以解释为“局部”回路的组合,每个回路执行一种近似贝叶斯推理的形式,称为预测编码[5]。

在建立了陈述和证明“贝叶斯更新光学合成”1 所需的结构之后,我们将“统计推理问题的代数”形式化为统计游戏的类别。这些“游戏”由一个与上下文适应度函数配对的镜头组成,它定义了我们通常认为控制论系统优化的量,并且“上下文”使系统与其环境的交互正式化。在这一发展中,我们从合成博弈理论中得到很多启发[2,7]。我们用从最大似然估计到广义变分贝叶斯方法的一系列例子来解释这些统计博弈。

本文是系列论文的第一篇。下一期将介绍为统计游戏提供“动态语义”所需的结构,从而为那些执行近似推理的系统注入一些活力。随后的一篇论文将解释这些系统如何执行动作,从而影响它们所居住的世界。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

f9e8203f96691b8842666b0e0ebf4e0a.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值