- 博客(8058)
- 收藏
- 关注
转载 长文访谈 | AI 接管世界的四种最可能方式,以及8年内实现AGI的利弊分析
来源:AGI HuntRyan Greenblatt 谈 AI 接管世界的四种最可能方式,以及8年内实现AGI的利弊分析。来源链接:https://80000hours.org/podcast/episodes/ryan-greenblatt-ai-automation-sabotage-takeover/发布时间:2025年7月9日 星期三 10:48:47 GMTRyan Greenblatt 是《Alignment faking in LLMs》一书的主要作者,也是 AI 领域最高效的研究人员之一。目
2025-07-12 15:16:59
1
转载 人形机器人:3大核心传感器技术壁垒及市场规模分析(1.3万字)
来源:传感器专家网传感器为人形机器人感知层核心零部件,人形机器人对传感器需求较大,成本占比较高,本文将对六维力矩传感器、电子皮肤、MEMS传感器这几类传感器进行市场分析:1传感器:全球市场空间分析1.1. 传感器分类众多,压力传感器占比较大传感器是自动化检测技术和智能控制系统的重要部件。传感器是能够把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。广义上的传感器一般由信号检出器件与信号处理器件两部分组成,从而转化感知到的模拟信号并使之以电信号的形式显示。传感器一般由敏感元件、转换
2025-07-12 15:16:59
14
转载 智能之镜:NeuroAI 如何反映大脑与人工智能的未来
以及强调语义表达与泛化能力的方法[3],将实验任务与被试逐试次行为序列转换成自然语言描述,并用其微调大型语言模型,经微调的模型在未见任务与新被试上依然保持准确预测,自然语言本身也视为一种高度灵活、结构丰富的认知表征形式,可能成为理解复杂人类行为的通用建模接口。它不仅具备数据驱动的建模能力,还能通过压缩与抽象,揭示出潜在的行为生成机制。它们的作用类似于一种“模式检索与拷贝”机制:当模型在输入中识别出重复出现的结构时,归纳注意力头会学会对第一次出现的位置产生很强的注意力,并根据该位置的后缀部分预测后续结果。
2025-07-11 17:30:25
39
转载 Grok 4 发布,地表最强 AI,所有学术领域达到博士水平
此外,虽然它的输出速度(75 tokens/s)低于O3(188 tokens/s)和Gemini 2.5 Pro(142 tokens/s),但依旧优于Claude 4 Opus(66 tokens/s),性能稳居一线。这一分数直接击败了OpenAI的O3(70分)、Google的Gemini 2.5 Pro(70分)和Anthropic的Claude 4 Opus(64分)。IEEE:2025 具身智能(Embodied AI)综述:从模拟器到研究任务的调查分析报告(15 页)
2025-07-11 17:30:25
177
转载 麻省理工《2025量子技术报告》| IBM、Google、nVidia、Microsoft等科技巨头量子计划分析
量子指数报告2025》描绘了一个充满活力的量子技术生态,IBM、Google、Microsoft、Amazon和NVIDIA等科技巨头通过专利、投资和技术开发,引领量子技术从理论走向现实。,不仅展示了科技巨头如IBM、Google、Microsoft、Amazon和NVIDIA的引领作用,还突显了大学、初创企业和全球政府的贡献。
2025-07-11 17:30:25
47
转载 把生命类比成机器之为何会失效?
图源:Pixabay导读: “生命是一种与任何机器都不同的实体,有自己的逻辑,无法拿别的事物做类比。” 在过去几十年里,我们对生命运作模式的叙述模式已经发生了变化,而且现在是时候把这种变化说出来了。科普作者菲利普·鲍尔认为,科学家们有责任向公众阐述这种认知模式的变化。 于是,他撰写了《生命传》(How Life Works)一书,来解释我们对于生命的认识,帮助我们看到生命体的真正不同与特殊之处,思考”活”的真正意义。[英]菲利普·鲍尔 | 撰文王乔琦 | 翻译2000年6月26日,
2025-07-11 17:30:25
12
转载 智源大会报告:“通用”类脑计算系统研究
报告从类脑计算系统面临的软硬件生态系统碎片化问题入手,认为可以从通用计算机等的发展脉络与发展方法论里汲取经验来指导类脑系统研发,进而通过分析类脑计算应用的计算/数据访问特征,提出构建“通用”基础软件以及与通用处理器架构融合的类脑计算芯片,并介绍了团队在这方面的工作。随后,具体介绍了团队在类脑芯片架构与编译框架方面的工作。
2025-07-10 16:08:46
117
转载 「世界模型」也被泼冷水了?邢波等人揭开五大「硬伤」,提出新范式
如论文图 6(左半部分)所示,这种被批判的「编码器 - 编码器架构」在潜在空间中进行「确定性的下一嵌入预测」 ,但它在功能上仍是自回归的,需要递归地预测未来状态,因此并未真正避免其声称要解决的误差累积问题。如图 9(右半部分)所示。最后,作者认为,世界模型不是关于视频或虚拟现实的生成,而是关于模拟现实世界中所有可能性,因此,目前的范式和努力仍然是原始的。相比之下,自然语言是人类经验的高度压缩和抽象形式,它不仅能描述物理现实,还能编码如「正义」、「动机」等无法直接观察的抽象概念,并承载了人类的集体知识。
2025-07-10 16:08:46
27
转载 爆火的AI4Research,被哈工大车万翔团队讲明白了
为了解决这个问题,主要出版商引入了人工智能驱动的工具,例如自动关键字提取,主题匹配和初步评分,以提高效率,缩短周转时间,并减少人工筛选。生命科学和医学研究中的 AI 使用算法和计算模型来分析和预测跨尺度,从分子结构到临床诊断,加速药物发现,优化实验工作流程,提高诊断准确性,推进精准医疗。在化学和材料科学中, AI 驱动的化学和材料自动化将机器学习,机器人和仪器集成到一个闭环系统中,用于设计,合成和表征,加速决策和实验。在软件工程,应用 AI 技术自动化软件开发任务,可以提高代码质量和开发人员的生产力。
2025-07-10 16:08:46
50
转载 5个AI Agent“辩论”诊断,准确率超人类专家4倍 | 微软AI CEO详解微软医疗AI新突破
因此,在真实的临床应用环境中准确和可预防地检测这类疾病的能力,我认为将大大超过医生无法以你描述的方式进行锻炼的风险。而那是我们能做的极限。这就是为什么顺序诊断部分如此重要的原因,因为你可以实时观看 AI 向病历提问,得到一个答案,形成一个新问题,得到一个答案,提出一个新问题,然后要求一种不同类型的测试,得到那些结果,解释它,然后给出一个答案。对于这项技术的未来,他怀有极高的期望。因此,医生的角色不仅仅是提供人际连接和亲身陪伴,更是“以一种深度共情的方式与一个收到了诊断的患者一起思考,来规划他们的治疗过程。
2025-07-10 16:08:46
8
转载 【万字深度长文】深入浅出解析大模型的上下文工程
这是一款旅行助手大语言模型智能体,旨在记住你的偏好,实时获取信息,并在多轮任务中保持敏锐。在本文,我们不仅会探索什么是上下文,还会像系统工程师一样拆解它:如何构建、隔离、存储、检索、压缩上下文,并随着时间推移塑造它。本文中,我们了解到上下文工程不仅是将文本塞进令牌窗口,更关乎知识结构化、记忆管理,以及设计能像人类一样推理、适应和协作的系统。可以是结构化的(如图表或关系表)或非结构化的(如笔记、文件、嵌入)。我们常将LLM视为神奇的智能引擎,但没有合适的上下文,即使最智能的模型也只是在盲目猜测。
2025-07-09 16:51:01
28
转载 基于能量的Transformer横空出世!全面超越主流模型35%
通过全新能量机制,首次实现在跨模态以及数据、参数、计算量和模型深度等多个维度全面超越Transformer++(基于Llama 2的Transformer优化版本)的模型。在离散(文本)和连续(视觉)模态下,EBT在数据量、批次大小、参数量、计算量和模型深度等方面比Transformer++提升了约35%。
2025-07-09 16:51:01
36
转载 Fundamental Research 文章抢先看|高小榕等:如何“阅读”你的大脑?脑-机接口的信号采集技术综述
最后,论文讨论了BCI信号采集技术的潜在可行技术和未来发展方向,包括非侵入性植入技术、微创植入技术、侵入性非植入技术和侵入性干预技术等。文章强调了信号采集在BCI系统中的关键重要性,通过对过去十年当代文献的研究,引入了“手术 - 检测二维全景”的创新分类模式,系统地组织了BCI研究中使用的各种信号采集方法。总的来说,BCI信号采集技术的发展需要跨学科的合作和创新,未来应不断探索潜在可行技术,拓展其在消费电子、医疗康复等领域的应用,同时关注伦理和安全问题,以实现BCI技术的可持续发展。
2025-07-09 16:51:01
117
转载 机器人大军+DeepFleet,亚马逊重塑物流未来
随着DeepFleet持续学习进化,未来将在运营效率、网络布局和服务模式等方面实现更深层次的突破,持续拓展机器人物流系统的可能性边界。DeepFleet的AI技术将协调亚马逊配送网络中机器人的移动,将机器人车队的运行时间提高10%,帮助更快速、更低成本地向客户配送包裹。同时,亚马逊始终保持高质量标准,在设计师、制造团队和一线员工之间建立有价值的反馈循环。
2025-07-09 16:51:01
92
转载 神经网络不要梯度?牛津团队的NoProp干掉反向传播
它的核心思想其实很“反直觉”:每一层都自己学会“去噪”一个被加了噪声的目标(标签),且每一层的训练都是独立的,完全不需要梯度从头传到尾,也不需要逐层前向推理。本质上,每一层都是一个“去噪专家”,收到一个被加噪的标签和。——每层的“表示”都是用户指定的(比如高斯加噪的标签embedding),它只管把噪声还原成标签,不去学什么“从低到高的抽象特征”。
2025-07-08 17:54:32
39
转载 大脑的秘诀,能否成就真正的人工智能?
是连续的边际集合稳定的固定点,如系统矢量场所示,水流从四面八方流向该点灰色(它给出了状态空间中每个点的变化方向和幅度,由系统的微分方程)。波动智能旨在建立一个基于人类情绪与反应的真实需求洞察及满足的价值体系,融合人工智能与心理学,构建覆盖情绪识别、建模与推荐的智能引擎,自主研发面向社交、电商等场景的多模态情绪识别引擎、情绪标签系统及情绪智能推荐算法,形成从情绪采集、建模到商业转化的完整解决方案。在认知的迷宫里,大脑并非依赖清晰笔直的道路前行,而是以一种充满弹性与动力的方式穿梭在复杂的状态空间中。
2025-07-08 17:54:32
53
转载 新实验,挑战量子力学的一个著名诠释
它提供了一个窗口,让我们得以窥见粒子在穿越本不允许其存在的区域时,究竟发生了什么,并为关于“隧穿时间”定义的争论注入了新的思考。研究人员根据两个波导中光子在不同位置的分布图像,仿佛拍下了一张穿越势垒过程的“快照”,并读取了不同位置的“时间刻度”。玻姆诠释中的一个关键预测是:若粒子隧穿进入一个无限长的势垒,它会静止不动。因此,在实验中,研究人员通过光子在坡道上的初始位置来计算其动能,从而在每一次实验中推算出光子在势垒区域的局部动能。实验是在两个镜子之间的腔体中进行的,腔体内部填充了含有荧光染料的液体。
2025-07-08 17:54:32
104
转载 万字追问:大语言模型能实现通用人工智能吗?
通过结合这两种方法,开发者可以设计一个混合型神经符号AI系统,该系统利用神经网络在处理原始数据方面的灵活性,以及符号系统的可解释性和结构化推理能力,在更广泛的领域中进行更稳健的问题解决,包括那些需要常识知识和复杂推理的领域。然而后续研究表明,这种涌现可能只是由有缺陷的量度所制造的假象。介绍了这么多种可能很有成果的通往人工通用智能(AGI)的替代技术路径,我们的目的不是提出具体建议,而是为政策制定者和其他利益相关者提供足够概念性的理解,让他们看到这些替代方案的多样性和广泛性,明白通往AGI的路径不止一条。
2025-07-08 17:54:32
70
转载 中国科学院院士鄂维南:AI赋能研发 推动“大科研时代”到来
更重要的是通过实验,通过计算,可以得到很多增量资源,这个是更大的空间所在,这也是为什么我们花这么大的精力来做计算的方法,来做自动化的实验,智能化的实验方法,它要构造一个一体化的平台,在这个一体化的平台上,就一个数据库,一个图书馆,整合了所有的教育资源,还有一个超算中心整合了所有的计算平台,还有一个实验室整合了所有的实验功能。应该说,从我个人的角度来说,我这一生的研究生涯,几个主要的事情:多尺度的方法、AI For Science、大数据,我都先看到了,但在我的脑子里面,压根就没有一个全量资源这样的概念。
2025-07-07 16:47:33
749
转载 大模型参数简史
同年12月,DeepSeek发布V3 Base模型,参数高达6710亿,每次推理启用370亿,训练数据更是达到惊人的14.8万亿token。Dots模型总参数1430亿,激活参数140亿,训练数据为11.2万亿token,采用“精细MoE+共享专家”架构,推理效果已可对标Qwen2.5-72B。但这种“AI训练AI”的循环,常常导致模型退化,形成“生成病变”。此后几年,GPT-3.5和GPT-4接连问世,尽管官方未公布架构细节,但它们显然进一步扩大了参数规模和数据体量,推动了AI能力的飞跃。
2025-07-07 16:47:33
160
转载 基于大模型的智能体中由自主性引发的安全风险综述
与传统AI系统针对输入只输出一次性预测或决策不同,这些大型模型智能体(通常由最先进的大语言模型,LLMs,驱动)[3]–[7]能够持续与环境交互:它们可以感知来自用户或其他来源的输入,推理下一步行动,并通过各种工具或执行器执行操作,形成一个闭环反馈过程 [8]。尽管这种能力大幅拓展了人工智能的功能边界,但也引入了新的、质变级的安全风险,例如记忆投毒、工具滥用、奖励操控(reward hacking)以及由价值错位导致的涌现性失配等问题,这些风险超出了传统系统或独立LLM的威胁模型范围。
2025-07-07 16:47:33
172
转载 FOCUS : 以对象为中心的机器人操作世界模型
来源:GreateAMindFOCUS: object-centric world models for robotic manipulation焦点:以对象为中心的机器人操作世界模型https://biblio.ugent.be/publication/01JVKRSDJA9TGBAAAV5NSH52V5将世界理解为对象及其可能的交互关系是一项重要的认知能力。然而,当前强化学习中采用的世界模型通常缺乏这种结构,而是用全局潜在向量来表示世界状态。为解决这一问题,我们提出了 FOCUS—— 一种基于模型的智能
2025-07-06 17:29:27
30
转载 复杂空间指令也能秒懂?RoboRefer 让机器人理解推理空间,开放世界也能精准行动!
值得一提的是,团队不仅关注结果导向的奖励(outcome-based reward),还创新性地设计了基于过程的奖励函数(process reward functions),这些函数能够感知中间推理过程的质量,从而提升模型多步空间指代任务中的推理精度。当前多模态大模型在 2D 预训练阶段缺乏对空间关系的深入理解,为了提升模型的单步空间理解能力,研究人员引入了一个独立的深度编码器,使模型能够更有效地感知和利用三维信息,并通过全参数微调(SFT)进行训练。」这样的定量问题,还是「哪个物体在左边?
2025-07-06 17:29:27
59
转载 韩国大学生质疑盘古大模型套壳抄袭,华为回应已严格遵循开源许可
这起事件的最终走向,无论结果如何,都将成为一个标志性的案例。近年来,从零一万物(01.AI)的Yi系列模型被指架构与Meta的Llama高度相似,到斯坦福大学团队的Llama3-V项目被证实“套壳”了中国初创公司面壁智能的MiniCPM模型,类似的争议已屡见不鲜。该报告的作者——一位自称为哥斯达黎加大学的韩国学生——采用了一种名为“LLM-Fingerprint”(大语言模型指纹)的技术,对华为盘古Pro MoE模型(总参数720亿)与阿里巴巴通义千问Qwen-2.5 14B模型进行了深度比对。
2025-07-06 17:29:27
3062
转载 人工智能如何重塑人类对“智能”的理解
随着越来越多复杂的人工智能系统被开发出来,并能够执行曾被认为只有人类才能完成的任务,人们必须面对一个根本问题:这些系统是否拥有某种形式的智能,还是它们仅仅是在没有真正理解的情况下模拟出智能行为?人工智能技术的迅猛进步既令人振奋,也引发担忧。人们将不断探索人工智能系统的能力及其对伦理、教育等各个领域的深远影响,此过程中必须持续警醒、不断努力,以更包容的视角重新定义“智能”这一概念。随着人们深入探讨人工智能的影响,不仅要关注它“能做什么”,更要思考它如何挑战人们对智能的传统理解,以及这种理解对人类发展的影响。
2025-07-06 17:29:27
85
转载 人类智能与人工智能的根本差别与相对优劣——兼论双智社会的最大陷阱 | 陈小平
来源:风云之声作者简介陈小平,中国科学技术大学计算机学院教授,广东省科学院人工智能首席科学家,中国人工智能学会会士、人工智能伦理与治理工委会主任。说明:本文根据作者2025年6月26日在广东外语外贸大学著名教授讲坛上的演讲内容整理加工而成,为网络首发。讲坛发言原标题为《跳出人工智能时代个人成长和职业发展的最大陷阱》。摘要对最近一次图灵测试的实验结果进行分析和解读,提出图灵测试的分级,并肯定人工智能已经通过了初级图灵测试。结合人工智能各方面的进展,认为人类智能和机器智能双足鼎立的“双智社会”正在到来。通过对大
2025-07-05 17:29:15
115
转载 人工智能还无法独立设计芯片
模型来逐步预测芯片上每个模块的物理坐标,就像人工智能聊天机器人逐步预测句子中的单词那样,从而创建一个基于人工智能的布图规划工具。然而,涉及多个目标和约束条件时,比如特定模块的位置规则、模块形状的限制,或者必须要将某些模块放置在一起时,这些工具往往难以应付。树结构的一个显著优势是它能确保布局无重叠,因为模块的位置是相对的而非绝对的,例如“在另一个模块的上方”,而不是“在这个位置”。因此,基于人工智能的布图规划工具无需预测每个模块的确切坐标,而是可以根据模块的尺寸以及其相邻模块的坐标和尺寸轻松计算出位置。
2025-07-05 17:29:15
33
转载 生物医药领域的Manus ,博士水平的自主通用科研智能体Biomni
是必不可少的,而Biomni不止能像传统的大模型那样帮你总结文献。在接下来的提问中,笔者还尝试让Biomni根据给出的文献,设计类似项目的实验计划,并推荐该领域的相关文献,Biomni在总结了对应论文实验设计上的关键点,并进行了谷歌搜索后,Biomni给出了如果我想照葫芦画瓢,用类似的方法研究前列腺癌,需要做什么样的实验,多么大的样本量,需要关注那些生物标志物,如何对发现进行验证等信息,并通过甘特图给出了项目每一阶段的预期目标。b)包含基因组,微生物,生化,病理,生物物理,分子生物学,药物等多个领域,c)
2025-07-05 17:29:15
289
转载 大模型为何难成为「数学家」?斯坦福等揭示严谨证明中的结构性弱点
为此,斯坦福大学、加州大学伯克利分校与麻省理工学院的研究团队提出了一种创新方法:将不等式证明任务拆解为两个 “非形式化但可验证” 的子任务,即 “界限估计” 和 “关系预测”,并基于此构建了第一个奥林匹克级不等式证明基准数据集 ——IneqMath。另一方面,当前主流的大语言模型是在海量自然语言上训练出来的。例如,对于一个复杂的函数 f (x),直接说明 “经过复杂的数值计算我们知道 f (x) 的最小值在 x=1 取到 “但是没有给出具体的最小值求解过程的就属于逻辑偏差的一种,因为他跳过了关键的步骤。
2025-07-04 16:28:12
95
转载 被观察者的量子力学规则与量子理论的一致性
来源:CreateAMindhttps://www.nature.com/articles/s41467-024-47170-2量子力学在测量方面的解释,以及诸如状态“坍缩”等概念,自量子理论诞生以来就困扰着物理学家。若将这些问题推向逻辑极端,它们就会与意识、现实等问题纠缠在一起(这里的“纠缠”是字面意义上的)。贝尔定理排除了通过任何(至少还算合理)的经典底层理论来绕开这些困境的可能性,而量子力学的成功又迫使我们将其视为一种基本理论,并正视其带来的逻辑后果。问题的核心在于观察者在量子理论中所扮演的特权角色。
2025-07-04 16:28:12
88
转载 刚刚,Ilya被逼当CEO,联合创始人都被Meta挖跑了
目前,除了伊利亚本人之外,智东西7月4日报道,今天,许久未对外发声的OpenAI联合创始人、前首席科学家伊利亚·苏茨克维(Ilya Sutskever),首次出面回应了Meta近期对他的新创企SSI持续的挖角动作。二人的唯一区别或许就是,格罗斯之前并不希望在创企担任重要职位,但他在SSI上打破了自己的惯例,成为其联合创始人,深度参与SSI各项工作。
2025-07-04 16:28:12
61
转载 LeCun团队揭示LLM语义压缩本质:极致统计压缩牺牲细节
LeCun早在1980年代便开始研究神经网络,最著名的贡献是提出了卷积神经网络(CNN)的核心架构——LeNet-5,用于手写数字识别。所有模型均从输入嵌入层提取静态词元表示,以贴近人类分类实验中“去上下文”的刺激方式,确保模型和人类的认知基准保持一致,便于公平比较。而人类则更注重适应性和丰富性,强调保持灵活性和上下文的完整性。
2025-07-04 16:28:12
66
转载 万字追问:如何突破原生大脑局限?
来源:追问感知信息过去常被认为是体验的起点,但关于预测性大脑的新兴科学将这一传统认知彻底颠覆了。我们的大脑总在努力预测世界正要呈现给我们的样子,而且永无止息。是这些预测构建与形塑了人类的一切体验,从我们解读他人面部表情的方式,到我们感受到的疼痛,再到我们的观影计划。情绪、心境甚至计划也都以预测为基础。抑郁、焦虑和疲劳都反映了塑造我们体验的内隐预测的改变。改变这些预测(比如使用不同的词汇“重构”特定情境),我们的体验本身也会改变。在本篇文章中,认知哲学教授安迪·克拉克(Andy Clark)将预测处理理论应用
2025-07-03 17:45:32
109
转载 深度解析一种新的自主 AI 系统:Deep Research AI 代理
作为典型的开源研究,OWL 和 Openmanus 扩展了他们的管道,包括与 GitHub、Notion 和 Google Maps 等平台的交互,并利用 Sympy 和 Excel 等数字库进行组合数据分析和多模态媒体处理。在这项调查中,我们系统地回顾了 DR 代理的最新进展,从信息检索和报告生成的角度将现有方法分为基于提示、基于微调和基于强化学习的方法。LLM 驱动的 DR 代理系统中的自我进化范式为结构化推理和动态检索提供了巨大的前景,并为高效的知识重用和持续学习开辟了新的途径。
2025-07-02 17:08:57
173
转载 方塘论坛回顾 | 赵汀阳:人工智能的伦理与思维之限
似乎可以这样解释:理解了因果关系就大概理解了“事件”(event),事件必定形成特定语境,通过事件语境的特定关系,就大概理解了事物涉及的各种相关性的意义所在,而如果理解了足够多的事物相关性,就差不多建构了一个“可能世界”。至今为止,人类主要通过函数关系来表达动态,仍然是通过名词之间量的变化去理解动态,虽然能够建立很有用的理解,但不够充分,似乎漏掉了一些因素,比如定性的因素、意义和价值因素,就是说,不确定的事实连续动态并不能完全简化为名词之间的函数关系,因果变化也不仅仅是量化的函数关系。
2025-07-02 17:08:57
96
转载 万字追问:如果意识普遍存在?
我们如何知道自己此刻是“有意识”的?这种对自己体验的确认,似乎无需推理就能成立。我们当然不会怀疑自己的意识体验,但当我们从个人经验跨越到自然整体时,这个问题骤然变得陌生:意识究竟是生物进化过程中的某种副产品,还是自然界原本就具有的一种属性?我们之所以会认为意识源自复杂系统,是不是因为在观察中,我们习惯只在语言和报告能力存在的地方“确认”它的存在?倘若意识并非某种进化的附属产物,而是自然界最基本的存在维度之一,我们是否需要重新理解我们是谁,我们又如何存在?肖恩・卡罗尔Sean Carroll理论物理学家从事量
2025-07-02 17:08:57
68
转载 比女皇报告还炸裂!67页AI深度调研刷屏,全球LLM大决战真正开始
在产品开发的早期阶段,最大支出通常是人才相关费用,包括招聘、培训及技能提升。在生产力方面的AI应用,目前排名第一的是代码智能体(包括Cursor,Claude等编程助手),其中高增长初创公司用AI编写了33%的代码。尽管目前很多公司仍免费提供AI功能,但已有超过三分之一(37%)计划在未来一年调整定价策略,更加贴近客户实际获得的价值和AI功能的使用程度。
2025-07-01 17:53:43
168
转载 什么是意识?Wolfram 计算万物视角下的生命、智能与万物
来源:集智俱乐部史蒂芬·沃尔夫勒姆(Stephen Wolfram),一个大神级别的科学怪才,几年前开启了自己以计算统一整个物理学的「Wolfram Physics Project」。在这个项目中,他对智能尤其是意识的本质也发表自己深刻的见解:在宇宙的超图网络中,以计算视角看,只要是足够复杂的系统都具有智能,而意识本质是对智能的降级——是一种是计算受限下形成的第一人称序列因果整合下的「连贯线索体验」。所谓物理规律是观察者算力不足导致平均化下的「可约化的口袋」:统计力学是对一群粒子的平均,相对论是对空间的平均
2025-07-01 17:53:43
93
转载 面对具身智能数据瓶颈问题!孙富春、赵明国、王鹤、庞江淼、赵同阳、仉尚航、卢宗青、高阳、唐剑都有怎样的思考?
千寻智能已将该方法应用于实际验证,例如通过分析人类叠毛巾的视频,模型学习到毛巾的运动轨迹和手的操作方式,并迁移到机器人上,使其能处理任意状态的衣服或在陌生环境中倒茶,展示了较高的成功率与实用性。与大语言模型数据不同,具身智能需要采集物理交互中的高维动态数据(如力反馈、材质摩擦、碰撞响应等),但真实场景数据获取依赖精密传感器和硬件设备,且受限于场景多样性、安全风险及隐私等问题,目前全国范围内具身智能最大开源数据集规模也只有百万级别,相比自动驾驶领域的单日上亿条数据,相差百倍以上。
2025-07-01 17:53:43
162
转载 人类大脑能做到而人工智能做不到的事情
我们所看到的景象是独一无二的,”格罗恩说道。“随着越来越多的行业——从医疗保健到机器人技术——使用人工智能,机器不仅要识别事物本身,还要理解它的功能,这一点变得越来越重要,”格罗恩解释道。“当专门针对动作识别进行训练时,它们可以在一定程度上接近人类的判断,但人类的大脑模式与模型的内部计算并不匹配,”Groen 解释道。格罗恩还指出了人工智能的可持续性。
2025-07-01 17:53:43
50
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人