神经科学中的人工智能鸟瞰视角

来源:CreateAMind

Bird’s Eye View of Artificial Intelligence in Neuroscience 

神经科学中人工智能的鸟瞰视角

https://www.liebertpub.com/doi/pdf/10.1089/ains.2024.0001

图片

摘要  

本综述采用了一种常见的文献计量学技术,通过分析引用模式来确定人工智能(AI)在神经科学研究中的应用领域。利用文献耦合方法构建了相关出版物的网络,重点关注包含人工智能和神经科学元素的同行评议研究文章和综述文章。在过去的十年中,人工智能在神经科学领域的应用经历了显著增长,与人工智能相关的神经科学出版物数量每4到5年翻一番。卷积神经网络(CNN)和基于变换器的大规模语言模型已被应用于越来越多的神经科学子学科,在认知、计算、系统和临床神经科学领域产生了深远影响。  

关键词:文献计量学、脑机接口、临床神经病学与神经外科、认知神经科学、计算神经科学、神经影像学

引言  

本文是对人工智能(AI)在神经科学不同领域应用的综述。其目的是探索研究文献的范围以及其中子学科之间的关系。与系统性综述不同,后者通过对通过详尽搜索收集的文献进行批判性分析以得出基于证据的研究结论,而本概述则利用引用模式来描述该领域的增长,并揭示“神经科学”这一广阔领域中子学科之间的共性,从而识别出互动与合作的机会。  

人工智能乃至智能本身并没有严格的定义。一个较狭义的人工智能定义可能是:能够模仿或超越通常被认为属于人类能力范围的任务的机器。一个更广义的人工智能定义是:能够在看似对观察者而言巨大的搜索空间中快速找到适当解决方案的机器。还有一个更广泛的定义被提出,也是本文所采用的定义,即任何旨在构建这种“智能”机器的统计学、机器学习或其他领域的工作。  

我们在过去十年中发现了人工智能与神经科学交叉领域的出版物呈现出一些趋势。2010年代的人工智能热潮主要由计算机科学家在卷积神经网络(CNN)和变换器等算法上的进步推动,这使得过去十年中与“人工智能”相关的神经科学出版物数量增加了五倍以上。这些影响在神经科学的各个学科中表现得多样化且深远。例如,在认知神经科学中,卷积神经网络(CNN)和基于变换器的大规模语言模型在实时“解码”颅内植入物和功能性磁共振成像(fMRI)中的神经信号为流利的语言、图像和表述思想方面发挥了不可或缺的作用。在电路和系统研究中,应用于数百万张电子显微镜图像的卷积神经网络对于完成果蝇全脑的神经元“连接图谱”以及小鼠视觉皮层的一部分至关重要。在计算神经科学中,借助最近开发的大规模并行神经元记录技术,研究人员表明卷积神经网络可以部分解释视觉、听觉和其他语言区域中生物神经元的计算响应。在临床神经病学中,过去十年中与人工智能相关的出版物激增了13倍以上,因为人工智能工具逐渐为临床医生和临床导向的研究人员所熟悉并可用;这些工具包括使用卷积神经网络进行医学图像的分类、分割、增强和加速采集,以及使用人工神经网络(ANN)改进神经系统和精神疾病的诊断和预后。

方法  

我们使用了VOSViewer软件来可视化与神经科学和人工智能(AI)相关的研究出版物中的模式和关系。具体而言,我们使用VOSViewer算法构建了出版物网络,并基于文献耦合强度(文章引用参考文献列表的相似性)识别出相关文章的“聚类”。任意两篇出版物之间的文献耦合强度由其参考文献列表或参考书目的相似程度决定。这种方法已被用于识别可能共享相似概念的出版物。基于文献耦合的网络类似于基于共引的网络。然而,前者基于文章引用参考文献的相似性,而后者基于文章被引用参考文献的相似性(即,如果两篇文章同时被同一篇文章引用,则它们被称为“共引”)。  

VOSViewer中的聚类算法是无监督的,正如无监督学习中常见的那样,用户必须选择一个阈值来确定聚类的分辨率(粒度或“精细度”)。倾向于“整合”的用户会选择较粗的分辨率,从而形成较大的相关出版物聚类;而倾向于“细分”的用户会选择更精细的分辨率,从而对研究文献进行更细致的刻画。  

为了探索过去十年中“人工智能”及相关关键词在神经科学出版物中的使用增长情况,我们分别为2016–2018年、2019–2021年和2022–2024年发表的文章构建了三个独立的网络。这种方法存在局限性(见“局限性”部分),但提供了一个初步框架,用以识别与“人工智能”和神经科学相关的一些主要研究领域。  

对于每个网络(覆盖2016–2018年、2019–2021年或2022–2024年),通过三种不同类型的搜索找到的文章被合并在一起。

(1) 对于每个三年时间段,所有在影响力排名前25%的“神经”类期刊中发表的人工智能相关文章(n = 129种期刊):  

(a) 首先,使用《期刊引用报告》(Clarivate, 2025)识别属于神经科学、临床神经病学和/或神经影像学类别的期刊。  

(b) 然后将该期刊列表缩小到2023年期刊影响因子(JIF)在其子学科中排名前四分之一(Q1)的期刊(521种期刊中的129种)。  

(c) 最后,使用Web of Science主题搜索来识别在这些Q1期刊中发表的相关三年期内的研究或综述文章,且这些文章的主题必须同时与神经科学以及人工智能、机器学习或计算神经科学相关(见补充数据S1中的搜索查询#1)。  

(2) 在多个多学科科学类别中,影响力排名前10%的期刊中发表的与“人工智能”和“神经科学”相关的文章,包括医学、全科与内科和实验医学类别中排名前10%的期刊(n = 92种期刊),以及精神病学类别中排名前4的期刊(n = 4):  

(a) 首先,使用《期刊引用报告》(Clarivate, 2024)识别上述多学科科学和医学类别中的期刊。  

(b) 然后将该列表缩小到其类别中2023年JIF排名前10%的期刊(135种期刊中的14种)。  

(c) 使用《期刊引用报告》(Clarivate, 2024)识别精神病学类别中的4种顶级期刊。  

(d) 最后,使用Web of Science主题搜索识别在这些期刊中发表的相关三年期内的研究和综述文章,且这些文章的主题必须同时与神经科学以及人工智能、机器学习或计算神经科学相关(见补充数据S1中的搜索查询#2)。  

(3) 在任何Web of Science(WOS)索引期刊中发表的与“人工智能”和“神经科学”相关的前1%高被引文章:  

(a) 首先,使用Web of Science的“主题”搜索识别在相关三年期内发表的文章,且这些文章的主题必须同时与神经科学以及人工智能、机器学习或计算神经科学相关(见补充数据S1中的搜索查询#3)。因此,这些文章可以发表在任何被Web of Science索引的期刊中,无论其WOS分配的“学科类别”或其JIF如何。  

(b) 从该列表中,识别出前1%“高被引”文章(即在其WOS学科类别中按引用次数排名前1%的文章)。为了减少对近期出版物的偏倚,还使用了WOS中的“热点论文”标志,以包括过去两年内发表且引用率高于同龄文章的文章。  

值得注意的是,文献耦合并不是可视化相关出版物网络的唯一方法。其他选项包括基于文章被其他出版物共同引用频率的共引网络、识别合作研究人员群体的合著网络,以及根据关键词列表相似性对文章进行分组的关键词共现网络。  

本文主要引用综述文章,因为在包含数千篇文章的网络中引用个别研究文章不太实际。此外,需要强调的是,由于网络中仅包含标题、摘要、作者关键词和/或“Keyword Plus”中明确包含人工智能相关词汇的文章,因此它们仅代表神经科学研究的一小部分。(“Keyword Plus”是Web of Science生成的计算机搜索字段,由文章引用参考文献标题中频繁出现的词语组成。)  

在创建网络时,VOSViewer参数设置为“默认”参数:  

- 方法:关联强度。  

- 聚类分辨率:1.00。  

- 最小聚类大小:1。  

- 合并小聚类:是。  

- 布局吸引力:2。  

- 布局排斥力:1。  

有关VOSViewer算法的更多详细信息,请参阅VOSViewer手册及其描述其在特定研究领域实际应用的文章。

结果  

图1A显示,从2014年到2024年,在Web of Science索引的高影响力临床神经病学期刊和非临床神经科学/神经影像学期刊中发表的“人工智能”相关文章数量分别增加了14倍以上和3倍以上,总体增长超过5倍。图1B和C展示了文献耦合网络分析的结果。在图1B中,尽可能使用相同的颜色来标识不同三年时间段内的相似聚类。然而,如下所述,随着时间的推移,某些聚类发生了显著的重组、合并、重新定义和/或分裂。  

图片

图片

例如,在2022–2024年期间,聚类3(紫色)主要由关于颅内肿瘤研究中人工智能的出版物组成,其中许多与使用卷积神经网络(CNN)进行肿瘤分割相关;然而,在2016–2018年和2019–2021年期间,聚类3还包括许多关于使用CNN对医学图像中的其他病理(不仅仅是肿瘤)进行分割的出版物。因此,在早期时间段,它是一个“CNN分割”聚类,而不仅仅是专注于肿瘤。这可能是因为肿瘤是医学图像中最早被研究人员作为自动分割目标的病理之一。  

此外,到2022–2024年,认知神经科学背景下的功能性磁共振成像(fMRI)和脑连接性已经成为一个非常大且定义明确的聚类(聚类7,黄绿色)。然而,在早期时间段,这一聚类并未明确定义,fMRI相关的出版物分布在其他几个聚类中,包括计算神经科学以及更大的“临床应用”聚类(聚类4,红色)中的精神病学“子聚类”。  

另一个变化是,一个“电路与系统”(深紫色)聚类在早期时间段(2016–2018年和2019–2021年)出现,但在2022–2024年期间被合并到计算神经科学聚类(聚类1,深蓝色)中。这可能与以下因素有关:自2010年代初以来,大规模、高时空分辨率神经记录技术的广泛可用性,使研究人员能够通过迭代过程将实验记录与神经元的计算模型进行比较,从而改进模型,拉近了这两个领域的距离。此外,人们对利用递归神经网络(RNN)研究神经群体动力学的兴趣激增,并在过去十年中在突触水平连接组映射及伴随的功能记录方面取得了显著进展,如果蝇和小鼠视觉皮层的一部分的研究,这也促进了这两个子学科之间的联系。  

聚类2(青绿色)包括脑机接口(BCI),并在过去十年的所有时间段中都存在,尽管其特征随着时间的推移发生了演变:从包含大量关于假肢机器人技术的文章,逐渐转变为包含更多关于皮质电图(ECoG)、脑电图(EEG)和深部脑刺激(DBS)的研究。

如图1A和B所示,从2014年到2024年的另一个明显趋势是人工智能在临床应用(聚类4,红色)中的使用显著扩展。这一趋势早期由利用卷积神经网络(CNN)分割医学图像的努力推动,后来则受到利用人工神经网络(ANN)改进各种神经系统疾病的诊断和预后的努力驱动,相较于回归分析和其他传统机器学习技术有了显著进步。此外,与阿尔茨海默病相关的出版物数量也出现了巨大增长(聚类5,绿色),这可能与2010年代至2020年代初期资金的大幅增加有关。  

有趣的是,在2022–2024年期间(图1C),阿尔茨海默病聚类(聚类5,绿色)在临床应用聚类(聚类4,红色)中划出了一条厚厚的绿色带。令人欣慰的是,绿色带下方的红色聚类4临床出版物,靠近颅内肿瘤(聚类3,紫色),主要是描述脑图像上中风、颅内出血及其他颅内病变分割的文章;而绿色带上方的聚类3(紫色)出版物,靠近聚类7(黄绿色,功能性磁共振成像、脑连接性和认知神经科学),几乎全是人工智能在精神病学中的应用。此外,小型的“脑龄”聚类(聚类6,黑色)与阿尔茨海默病聚类非常接近。  

最后,我们使用了最近时间段2022–2024年(图1C)中定义的聚类,为总结人工智能在神经科学研究中的重要和新兴领域提供了一个框架。以下各部分描述了这些出版物聚类的当前格局及一些关键主题。

聚类1(深蓝色):计算神经科学、电路与系统 

该组的出版物构建并研究了突触和电路层面神经过程的计算模型。这些模型范围从单个神经元的详细模拟到大型网络。它们被用来研究记忆、学习、决策和感官数据处理背后的脑机制。  

计算神经科学和人工智能领域密不可分,它们之间关系的历史已被描述过。4,10–16 神经生物学启发了20世纪40年代对人工神经网络(ANN)的首次理论描述,以及20世纪80年代强化学习的发展。1958年,首个ANN的物理实现——一台重达5吨、占据整个房间的计算机,被称为感知机(Perceptron),被宣传为能够很快解决几乎所有问题,甚至最终可能达到意识状态的计算机的先驱。然而,这一愿景并未实现,“人工智能寒冬”从20世纪70年代初持续到80年代。希望在20世纪80年代初得以复兴,当时工业界展示了一些有用的“专家系统”,这些系统解决了非常具体且狭窄的实际问题,同时1986年反向传播算法被提出,作为训练多层ANN的计算解决方案。然而,当围绕专家系统的高期望未能实现时,第二次“人工智能寒冬”从20世纪80年代末延续到90年代。  

到了2010年代初,计算能力和数据存储能力取得了深刻进步。这为最近的人工智能“繁荣”创造了条件,主要由计算机科学家基于反向传播算法探索和改进算法(例如卷积神经网络CNN、变换器、强化学习)推动,而神经生物学的启发作用相对较小。16,17 然而,有观点认为,为了在更通用的人工智能方面取得显著进展,计算机科学与神经科学之间需要重新建立更紧密的互动。4,16 还有人提出,通用人工智能的基础将需要首先理解最原始能力背后的神经机制,例如感觉运动能力,而不是仅仅关注最高级、最近进化出的人类能力(如语言、游戏能力)(图2)。16 在过去十年中,实验技术的持续进步使得以前所未有的空间和时间尺度从真实大脑中获取并行原位神经元记录成为可能,这为促进和增强计算机科学与神经科学之间的双向互动提供了支持(图3)。

图片

图片

在20世纪90年代的人工智能寒冬期间,计算神经科学和人工智能逐渐分道扬镳,计算神经科学家专注于扩大对大脑动态的生物物理建模。这种传统的定量神经建模方法始于20世纪50年代霍奇金-赫胥黎(Hodgkin–Huxley)用于动作电位传播的微分方程,并逐步发展为复杂的生物物理模型,这些模型结合了电路、区域和/或整个网络和系统中的线性与非线性动力学。现代大规模神经建模的例子包括平均场模型,22 例如神经质量模型,23 它们可以模拟电生理信号(如脑电图EEG、脑磁图MEG和皮质电图ECoG)的特性,例如通过其微分方程系统的内在生理参数和非线性激活函数来描述振荡节律。它们还被用来研究疾病过程中的神经动力学变化,例如癫痫和精神病。  

尽管微分方程一直是描述神经过程的最常见数学方法,递归神经网络(RNN)不仅可以模拟微分方程系统,还可以直接基于测量数据进行训练。由于大约十年前大规模并行神经元记录技术的广泛可用性,许多研究现在可以强调计算模型与实验数据之间的迭代反馈——将新计算模型的输出与新的实验数据进行比较,从而在一个迭代的模型验证和优化过程中大大加速了这一领域的进展。24 例如,最近的一项研究使用预测性自动编码器模型提出了一种关于海马体序列学习的新假设,并直接与动物模型中的实验神经元记录进行比较;25 这些尖峰RNN模型是计算模型为神经生物学提供信息而非仅从神经生物学中汲取灵感的例子,揭示了工作记忆背后的神经机制。25,26 神经群体动力学是另一个用于理解大量互联神经元如何产生涌现特性的框架。该方法将类脑RNN视为动力系统,并已成功用于建模认知、时间感知、导航和运动任务中单个局部区域的计算。

随着过去十年人工智能研究的加速,计算神经科学和人工智能领域再次变得日益紧密相关。涉及这两个领域的出版物早在2016–2018年的文献中就已经形成了一个独特的聚类(图1B),不像一些其他最近才出现的聚类。这一聚类的出版物在过去十年中迅速增长。该聚类中的大多数出版物试图建模记忆、学习、决策和感官数据处理背后的大脑机制。以下部分中可以看到一些例子。  

“逆向工程”灵长类视觉系统  

到2012年,已经明确“核心物体识别”是通过一系列串行前馈计算实现的,但计算的形式尚不清楚。31 幸运的是,当时已经开发出能够同时在视觉皮层上获得数千个神经记录的电极阵列,开启了以前所未有的精细空间和时间分辨率研究视觉系统神经生理学的新时代。32 到2014年,训练用于物体识别的卷积神经网络(CNN)被证明可以预测颞下皮层(腹侧视觉流的最高层次)中约50%的神经元反应(图3A和4)。实验中,猴子被展示一组图像,并记录腹侧视觉系统不同层级排列的神经元反应。CNN使用相同的图像进行训练以执行图像识别任务。值得注意的是,对大量候选CNN模型的评估表明,CNN模型在物体识别任务中的性能越强,其最后一层的神经元活动与颞下皮层中的神经活动匹配得越接近。13,33,34 后来,深度神经网络也被证明可以建模其他区域的神经元计算,例如听觉皮层,35,36 以及颞上皮层、顶叶和额下回的语言区域,37 揭示了它们在处理数据时的表现。 

图片

需要注意的是,参与这项研究的研究人员指出,尽管这些模型取得了成功,但当今的人工神经网络(ANN)可能仍然相对简单,“尚未完全建模导致生物视觉处理的众多过程。”现代ANN并未包含生物神经元不同形态、神经递质和连接类型的复杂性(图5)。15 麦克弗森等人指出:“统计学家长期以来一直强调解释性建模和预测性建模之间区别的重要性。”38 因此,如果我们打算使用人工智能系统来建模并可能增进对大脑视觉处理的理解,那么继续提高AI模型与其在大脑中的对应系统的结构和机制相似性是非常重要的,同时还需要加强度量标准的能力以衡量这种相似性。

图片

最近,支持解释性建模和预测性建模之间区别的论点已经出现在文献中。例如,“脑评分”(量化模型预测脑活动的能力)和“脑层次评分”(量化模型层级与生物脑层级之间的同源性)被报告在最新高性能卷积神经网络(CNN)中有所下降。14,39 这一结果逆转了早期的趋势,即新模型的性能越好,往往其脑评分越高。在另一条研究线中,研究表明,人类的核心物体识别能力与当今性能最佳的CNN不同,它不受3D视角变化(图6A)或低通滤波和纹理修改(图6B)的影响,或者仅受到轻微影响;此外,尚未发现对人类有效的对抗性图像,而对CNN却存在这种情况(图6C)。

图片

图片

奖励与强化学习  

这一计算神经科学文章组的一个重要子集研究了多巴胺信号传导以及奖励、预测、学习和决策的神经机制;恐惧与焦虑;以及社会学习。模型被用来理解大脑如何学会将行为与奖励或惩罚联系起来,以及这种学习如何导致决策。最近的一篇综述概述了时间依赖性多巴胺信号的奖励预测误差假说,展示了当适当调整以适应不同脑系统时,该假说在解释动物行为的一些基本方面取得了关键成功,同时总结了尚未解决的问题。

这一子集的文章还包括关于社会学习的神经基础的研究,以及社会信息如何整合到决策过程中的研究。现实世界中的行为,尤其是人类的行为,受多种因素的影响,包括情绪、社会影响和个体差异。这一集群中的一些研究探讨了社会因素(如同伴影响和他人的存在)如何影响学习和决策。  

这一子集中最常见的AI技术(除了经典机器学习技术之外)包括:用于理解大脑如何学会将行为与奖励或惩罚联系起来的强化学习模型;用于分析神经记录或行为数据中复杂模式的深度神经网络;以及用于解释大脑如何通过更新信念来做出决策的贝叶斯推理。分析的最常见类型的数据包括行为数据(测量动物的选择、反应时间和其他可观察的行为)和电生理数据(记录单个神经元或神经元群体的电活动)的动物数据。

展望不久的将来,可以设想一种结合传统计算方法的研究,这些方法基于解析求解微分方程,例如描述连接脑回路、区域、网络或系统相互作用动力学的基于生物物理的神经质量模型,并将其与基于人工神经网络(ANN)的新技术相结合。这可以利用ANN在数据驱动分类、回归和分割方面的优势,同时结合传统神经模型在解释大脑潜在神经生理学方面的解释力,因为在大规模ANN的机制可解释性方面仍处于起步阶段。54 一个例子是使用卷积神经网络(CNN)和/或变换器网络作为生物物理神经模型的前端,用于图像(视觉)、听觉序列(听觉)、文本(语言)或电生理数据(如尖峰序列、EEG、MEG和ECoG)的降维处理。因此,神经模型可以更有效地训练,生成准确且能够用其内在生理参数解释的输出,因为拟合这些众多参数仍然是当前人类大脑生物物理模型面临的一大挑战。这种改进后的神经模型随后可以被用于,例如,识别神经精神疾病的新治疗靶点。

连接组映射  

如前所述,这一组的出版物通过数学方程和计算机模拟构建并研究了从单个突触到大规模神经元网络的神经系统模型。因此,这一聚类中还出现了通过“自下而上”方法理解大脑的进展——通过在突触层面绘制连接组为理解神经过程奠定基础。对这些生物体进行连接组映射的一个承诺是,理解所有生物共有的最原始能力(如感觉运动整合)背后的“电路模块”,而不是仅限于人类最高级的能力(如玩游戏、驾驶机动车和语言),这对于进一步迈向更通用的人工智能至关重要。

1986年,秀丽隐杆线虫(Caenorhabditis elegans)的完整连接组被报道,这是通过对大约8000张图像的手动注释构建的,并且被证明在不同样本之间高度一致,包含302个形态简单、分支较少的神经元。41 2023年3月,黑腹果蝇幼虫(3000个神经元和50万个突触)的连接组被报道,识别出93种不同的神经元类型,这是超过五年努力的成果。40  

2024年10月,基于约2100万张图像的成年雌性黑腹果蝇全脑连接组(14万个神经元和5000万个突触)发布,42,43 这一里程碑成就只有在人工智能计算技术进步的支持下才得以实现(图7)。此外,除了对单个神经元和突触的映射外,还包含了一个“投影组”(projectome),即不同脑区之间的脑回路及其投射的地图,提供了关于脑组织的大规模信息。在这一案例中,“人工智能”不仅是研究的目标,还作为一种重要的实用工具,允许从包含间隙和其他人工伪影的电子显微镜图像中重建神经组织,而这些问题无法在没有人工监督的情况下实际纠正。  

图片

关于哺乳动物脑连接组映射,过去一年的另一个里程碑是由皮质网络机器智能计划(Machine Intelligence from Cortical Networks)完成的小鼠初级视觉皮层立方毫米(占小鼠脑的0.2%)的重建。41,44,45,60 同样,对电子显微镜数据的卷积神经网络(CNN)分析对于填补空缺和修正缺陷至关重要。该映射不仅包括神经元、突触和胶质细胞,还包括线粒体和血管。  

随着对生物体连接组映射的推进,“结构连接组学”和“功能连接组学”这两个术语被使用,前者指纯物理连接组的映射,后者指将结构连接组与生理实验数据相结合。与上述果蝇和小鼠初级视觉皮层的标志性结构连接组映射一起,功能信息(如活体多光子光谱学)被用来展示一部分锥体细胞的视觉反应。 

除了绘制生物体突触水平连接组的努力之外,计算模型继续被用于通过整合来自不同实验模式的数据,弥合从单个神经元到大规模网络的不同研究尺度之间的差距。 

神经形态计算

神经形态计算领域的文章也出现在这一聚类中。虽然计算神经科学主要关注开发解释大脑功能的计算原理,但神经形态计算则致力于构建受神经元和突触生物学启发的“下一代”计算机硬件和软件。神经形态系统使用具有类似于生物神经元元素的脉冲神经网络。尽管神经科学在最近的人工智能“繁荣”中作用甚微,这一繁荣主要由计算机科学家基于反向传播算法(例如变换器)的探索推动,但这些算法正接近“内存墙”或“冯·诺依曼瓶颈”问题。已有人提出,需要利用我们对认知背后神经机制的理解来启发新的“人工智能”计算范式。

聚类2(青绿色):脑机接口、脑电图、脑磁图、深部脑刺激

这一聚类包括涉及允许神经系统与外部世界交互或在体内创建人工连接的技术的文章。大多数文章使用脑电图(EEG)、深部脑刺激(DBS)、脑磁图(MEG),或者描述脑机接口(BCI),例如为脑或脊髓损伤患者设计的语音和运动假体。一些研究使用功能性近红外光谱(fNIRS)或事件相关电位(ERP)。  

脑机接口(BCI)使用记录神经信号或在不同空间尺度上刺激神经组织的探针。微电极记录和对单个神经元或小群神经元的刺激使用直径约为0.05毫米的探针,具有约0.1毫米的空间分辨率。例如,密歇根探针(Michigan probe)、Neuropixels 和犹他阵列(Utah array),这些设备在动物研究中被常规使用,但由于操作和维护的复杂性,尚未用于临床。63 皮质电图(ECoG)由直径为1-3毫米、间距为3-10毫米的硬膜下电极网格组成,空间分辨率约为1毫米,足以探测视觉、体感或听觉系统等功能系统中的小区域。63 深部脑刺激(DBS)电极的口径和空间分辨率与ECoG相似,但用于访问深层结构(如丘脑底核)以治疗运动障碍,并正在研究用于治疗抑郁症等精神疾病以及创伤性脑损伤和中风等获得性脑损伤。相比之下,非侵入性技术(如EEG)记录的是“宏观神经元集合”的活动,其空间分辨率约为5厘米(图8)。

图片

脑机接口的一个子集专注于检测来自大脑的信号并将其解码为计算机生成的语音或控制机器人设备的信号。语音神经假体最近引起了特别关注,因为它们已接近临床可行阶段。55,57–59 这些技术为因中风或神经退行性疾病导致瘫痪而失去语言能力的人提供了解决方案。深度学习算法在这些语音假体中发挥了关键作用,通过实时解码ECoG记录的神经信号并将其转化为计算机生成的语音。该领域的最新进展包括使用更深入放置的微电极进行高时空分辨率神经记录,以及改进深度学习技术,以在最短的训练时间内保持高度精确的解码。

在此聚类的其他研究中,卷积神经网络(CNN)也被用于促进EEG信号的翻译,例如用于情绪识别、心脏骤停后接受听觉刺激的昏迷患者的预后评估以及EEG去噪。关于控制机器人肢体假体的出版物也出现在这一聚类中。这包括各种设备,如软体机器人可穿戴设备、动力外骨骼,以及脊髓刺激和人工智能辅助康复等治疗方法。使用人工智能的康复医学领域应用,例如步态分析和跌倒风险评估,也出现在这一聚类中 

脑机接口的发展进展也引发了神经伦理学这一新兴领域的警示。提出了诸如尚未充分描述的副作用(包括胶质增生、可能的免疫系统和原癌基因激活)以及“设备废弃”等问题(Hofmann & Stieglitz, 2024)。65,66 其他神经伦理学领域涉及隐私权、思想自由和自主权的问题,鉴于监测和操控大脑活动的技术前景;同意和知情决策问题,这些问题可能特别影响弱势群体或无法提供知情同意的人;使用神经技术增强人类认知能力的利弊;基于获取途径可能导致现有社会不平等加剧的可能性;以及对新神经技术的监管和治理。

聚类3(紫色):颅内肿瘤  

最常见的研究与预测胶质瘤或颅内转移性疾病患者的生存率相关。其中大多数使用了经典的机器学习技术和/或放射组学,69 但至少有一项研究使用了基于临床、MRI和分子病理数据整合的变换器深度学习技术。64  

另一组大型研究旨在预测临床上相关的肿瘤分子亚型(如O6-甲基鸟嘌呤-DNA甲基转移酶启动子甲基化状态、异柠檬酸脱氢酶1型、α-地中海贫血/智力障碍、X连锁胶质瘤(包括脑和脊髓室管膜瘤)、脑膜瘤分级、原发性中枢神经系统淋巴瘤的DNA甲基化状态以及非典型畸胎样/横纹肌样肿瘤亚型),以区分H3 K27改变型和H3 K27野生型高级别胶质瘤、弥漫性中线胶质瘤,和/或原发性中枢神经系统淋巴瘤,或者预测脑转移瘤的原发肿瘤类型。这些研究大多使用放射组学(提取形态、信号特征、边界特征或纹理等定量特征),通常结合至少一种经典机器学习方法(如支持向量机、随机森林、XGBoost、朴素贝叶斯、回归)来选择最相关的放射组学特征。70,71 至少有一项研究使用了无监督学习来选择放射组学特征。72 另一组研究未使用放射组学,而是使用卷积神经网络(CNN),包括残差网络(ResNets),在某些情况下还使用3D CNN进行全脑分析,以直接从MR图像中学习特征并预测肿瘤亚型。

脑肿瘤分割是几项研究的重点。一项研究表明,目前最先进的基于CNN的脑肿瘤分割算法已经达到了一个高水平的准确率,即使是在大量真实世界多中心MRI数据上,也能适应不同的协议并在某些情况下处理缺失序列的情况。75 使用深度学习生成合成数据的文章也出现在少数文献中。生成对抗网络(GAN)在一种情况下被用来生成合成T2 FLAIR图像,当时这些图像未通过其他MRI序列采集;76 在另一种情况下用于生成超分辨率磁共振波谱成像,以更清晰地描绘肿瘤边界和异质性。

几篇文章聚焦于“液体活检”:脑脊液(CSF)蛋白质组学和脑脊液脂质组学通常结合经典机器学习技术,用于确定胶质瘤的DNA甲基化谱;血清或血液则被用于无创评估脑膜瘤手术切除后的复发可能性。 

聚类4(红色):临床神经病学与神经外科应用 

根据我们的分析方法,聚类4是最大的出版物集群。几乎所有该聚类中的出版物都围绕着人工智能在诊断和预后中的应用这一共同主题。常见主题包括预测特定神经系统疾病的结果(最常见的是中风)、不同治疗干预措施的有效性以及医学图像的自动化分析。近年来,一个相对较新的研究方向是使用自然语言处理从自由文本医疗记录中提取可操作的信息,例如用于预测再入院率或识别高风险患者。这一庞大的研究领域将在即将出版的一期文章中进行回顾。

聚类5和6(绿色、黑色):阿尔茨海默病、脑龄 

这些聚类包含大量出版物,其中大多数涉及神经退行性疾病,主要是阿尔茨海默病(聚类5),另有少数描述了利用影像技术确定与实际年龄无关的“脑龄”(聚类6)。

在聚类5中,大多数研究集中于阿尔茨海默病的认知障碍诊断和认知衰退预测。尽管在某些情况下使用了人工神经网络(ANN)和深度学习,但这些研究大多主要采用传统的机器学习方法,包括广义线性模型(线性回归、逻辑回归和Cox比例风险模型)以及集成学习技术(包括随机森林、梯度提升和XGBoost),以及其他监督学习技术(如支持向量机)。然而,卷积神经网络(CNN)在图像分类和分割方面表现出色,并继续被广泛用于MRI上脑区的分割,现在还被用于病理学中量化颞叶尸检样本中含tau蛋白的神经原纤维缠结或β淀粉样蛋白斑块。一些研究聚焦于液体生物标志物,包括血浆标志物(如p-tau217、磷酸化tau蛋白(P-tau181)、β淀粉样蛋白(Aβ42/40)、胶质纤维酸性蛋白(GFAP)、神经丝轻链(NfL))或脑脊液(CSF)标志物(如CSF tau蛋白磷酸化模式)以及尿液蛋白质组学,作为潜在的诊断或预后标志物。一个持续的趋势是多模态模型的开发,这些模型结合了越来越多类型的输入数据(如MRI、PET、基因型、液体生物标志物),用于轴向扩散率(AD)中的分类或预后(图9)。81 最后,一些研究描述了使用监督机器学习技术分析语音和语言,主要用于阿尔茨海默病的诊断或认知障碍临床进展的预测。

图片

聚类7(黄绿色):认知与行为神经科学、脑连接性、功能磁共振成像(fMRI)和扩散磁共振成像(DTI)

这一聚类的研究探讨了健康个体和患有神经或精神疾病的人群中,大脑区域在结构和功能上的连接方式。大多数研究使用神经影像数据来理解并预测健康个体的认知能力或行为特征;神经精神疾病的症状严重程度是否存在;或者研究健康个体大脑在系统层面的组织方式。  

认知能力和行为特征的研究

这一聚类中的许多研究使用神经影像数据(如fMRI、DTI、结构性MRI)来理解和预测认知能力和行为特征。这些研究试图识别神经影像数据中的模式(例如,fMRI上的激活模式),以预测连续测量的认知评估(如记忆、注意力、语言和执行功能)或连续测量的行为特征(如特质焦虑、冲动性和渴望)。82–85 除了行为数据外,这一聚类中的文章还使用其他临床和人口统计学协变量(如年龄、性别),有时还包括遗传信息。用于提取相关脑连接模式的技术包括基于连接组的预测建模(CBPM)、后循环-Lasso、深度学习、支持向量回归和随机森林等。CBPM是一种常用技术,它是一个具有“内置交叉验证”的框架,旨在从脑连接矩阵中提取最相关的特征,以预测某一变量(图10)。84,88 尽管CBPM最初是在fMRI背景下开发的,但它也可以应用于分析其他类型的数据(如扩散成像、EEG)。  

图片

图片

神经精神疾病

这一聚类中的其他研究通过对神经影像数据(如fMRI、DTI和结构性MRI)进行类似分析,来研究神经或精神疾病(如自闭症、精神分裂症、抑郁症、注意力缺陷多动障碍和癫痫)中不同脑区的结构和功能连接方式。这些文章关注的是神经精神疾病,而不是健康人群的认知或行为特征。尽管CBPM最初被证明可以基于fMRI数据预测正常(即非临床)人群中诸如记忆、注意力和流体智力等认知能力,84,88 但随后也被用于研究这些临床人群中神经精神疾病的连续测量指标(如症状严重程度)。独立成分分析(ICA)是一种在此背景下使用的经典统计方法,它将观察到的fMRI信号分解为一组统计上独立的成分,每个成分代表一个空间上独特的、连贯的大脑活动模式,对应于一个功能网络。ICA通常用于检查患者和对照组之间这些网络的群体水平连接差异。在这组文章中,临床评估通常由问卷和量表组成,用于评估精神症状和诊断标准,其他人口统计学和临床信息,有时还包括遗传信息。这一聚类与聚类4(临床应用,红色)在主题上有部分重叠;那些更直接应用于临床精神病学且技术开发较少的研究出现在聚类4中,它们位于聚类4右上方,紧邻聚类7。有研究强调,方法选择的多样性使得理解这些选择对结果和解释的影响至关重要(图11)。

图片

图片

在计算精神病学这一过去十年新兴的领域中,研究正在构建针对成瘾、抑郁症、自闭症谱系障碍和精神分裂症等精神疾病的计算模型,以增进对这些疾病的了解并开发新的治疗方法。13,80,91–93  

健康个体的大脑组织

这一聚类中的第三个子组研究探讨了健康个体大脑在系统层面的组织方式。利用fMRI揭示大脑组织方式的研究背景可以追溯到其诞生之初。到2000年代初,fMRI已被用来展示视觉皮层的某些关键层次和空间布局特性。初级视觉皮层的fMRI测量结果显示,即使在没有意识感知的情况下,也能重现人类观看图像的低级特征(如边缘方向)。94 到2010年代初,fMRI测量还被证明能够重现想象图像的语义内容,95 这表明感知和想象图像的低级和高级语义内容分别在视觉皮层的低级和高级水平上有所体现,这进一步强化了早期PET研究中观察到的视觉皮层在想象图像时的激活现象。13 后续研究使用由自然场景或讲故事引发的fMRI显示,语义理解激活了一个覆盖大部分大脑皮层的特定“语义区域”网络。96,97 更近的一项研究表明,从完全独立的fMRI实验中获得的语义地图位置具有显著的一致性,其中一个实验仅使用口头故事作为刺激,另一个实验则使用无声电影作为刺激,这些地图分布在视觉皮层边界两侧的相对位置上。

健康个体大脑组织研究中的另一个新兴领域是动态连接性,它创建了时间依赖的大脑连接模型,认识到连接性并非静态,而是会随着时间变化,在几秒到几分钟的时间尺度上发生变化,具体取决于大脑状态,包括参与特定任务或暴露于某种刺激的情况。

成像方法  这一聚类中的大多数文章包含对功能性磁共振成像(fMRI)数据的分析。在神经影像技术发展之前,早期认知和行为神经科学家研究不同脑区功能的主要方法是通过观察具有局灶性脑损伤的受试者。1980年代,正电子发射断层扫描(PET)作为一种在不同心理过程中无创定位特定脑区激活的新方法,开辟了新的视野。另一个范式转变发生在1991年,当时首次展示了使用块设计范式(交替进行视觉刺激和休息阶段)来显示人类视觉皮层活动的功能磁共振成像(fMRI)。86 由于fMRI没有电离辐射,允许对受试者进行重复实验,并且比PET具有更高的空间和时间分辨率,再加上到1990年代大多数医院已经配备了带有fMRI功能的临床MRI扫描仪,因此它迅速受到从事人类脑图谱研究的认知和行为神经科学家的青睐。86,90  

一些研究结合了fMRI和扩散磁共振成像(diffusion MRI),后者通过测量水分子的扩散来评估大脑白质微观结构和结构连接性。99 例如,结合fMRI和扩散MRI数据可以研究结构-功能关系,并将其与行为/认知测试(如记忆、注意力、语言)、临床评估(如症状问卷)和人口统计学数据(如年龄、性别)相关联,以尝试预测个体的认知和临床特征或症状严重程度。有研究表明,通过fMRI获得的功能性脑连接数据在预测认知和行为指标以及神经精神疾病方面可能优于仅通过扩散MRI获得的结构连接数据,而其他研究表明,在局灶性脑损伤患者中,结构连接比功能连接更能准确预测整体认知能力。100  

静息态fMRI 这一聚类中的很大一部分文章使用静息态fMRI,其中功能性连接/脑网络分析通过对未暴露于任何特定刺激或未参与特定认知任务的受试者的区域血流低频振荡的相关性进行研究。1995年,也就是任务型fMRI首次展示后的几年,一篇不太引人注目的文章描述了“静息态fMRI”现象背后的原理——即使受试者既未参与任何特定任务也未接受任何特定刺激,不同脑区之间的低幅值、低频振荡(约0.1 Hz)血流波动仍存在相关性。对静息态fMRI的兴趣快速上升直到大约十年后才开始。静息态fMRI提供了关于大脑功能组织的信息,也被称作脑连接性fMRI。然而,由于区域间的fMRI功能连接并不一定意味着通过白质实现的解剖学连接,也无法确定因果影响的方向,一些神经科学家更严格地将这些称为“相关性”。为了从fMRI中推断因果关系,许多工作通过测量“有效连接性”来进行,最初使用传统统计技术(如动态因果建模和格兰杰因果关系),但其有效性存在争议。然而,最近使用深度学习的研究可能代表了fMRI有效连接性的新前沿,101 这对于追踪信息在大脑中的流动至关重要,而这些新的人工智能方法的性能可能会随着fMRI采集、预处理和分析技术的逐步进步而继续提高。  

自2005年以来,报告的功能节点或网络数量已从5个增加到超过350个。90 尽管尚无统一的命名约定,但在文献中常见的网络包括默认模式网络、显著性网络、执行控制网络、感觉运动网络、视觉网络、听觉网络、额顶网络和小脑网络。102 确定功能连接的最常见分析技术包括低频波动幅度和低频波动分数幅度、区域同质性、图论、基于种子的功能连接和独立成分分析。102  

任务型或事件相关fMRI 这一聚类中的许多其他文章使用任务型或事件相关fMRI来研究特定认知任务或感官刺激期间的大脑活动和连接性。1991年首次展示的fMRI研究,86,90 显示了人类视觉皮层的活动,使用的是交替进行视觉刺激和休息阶段的块设计范式。随后,开发了其他范式来激活大脑的某些区域并提取相关信号。

自然刺激  在过去的十年中,使用“自然刺激”作为一种策略越来越普遍,这种策略旨在让大脑在fMRI采集过程中被“激活”,这种方式更接近于日常生活的常见体验,而不是狭隘的刻板刺激或任务。103 受试者在fMRI采集期间观看电影、听故事,或者从多种动作/刺激菜单中选择以自己的节奏执行或体验。尽管这些自然刺激较为复杂,但可以记录下特定明确的目标刺激发生的时刻。通过将随时间变化的神经活动图像(基于血流动力学响应函数)与标记特定刺激发生的时间依赖性函数进行卷积,就可以识别出由该刺激激活的大脑区域。“编码”是引入的一个术语,用来指代这种技术,用以绘制大脑区域与尽可能多的特定刺激之间的对应关系。96,104  

尽管静息态fMRI被称为“脑连接性fMRI”,为静息态fMRI开发的相同分析技术也可以用于上述任务诱发和自然刺激期间采集的fMRI数据。近年来,研究者还利用任务诱发的fMRI和自然刺激期间的fMRI来研究脑连接性。任务诱发和自然刺激的fMRI展示了在特定刺激或任务期间大脑不同区域如何协同工作,而静息态fMRI则揭示了静息状态下的功能连接。事实上,最近的研究表明,基于任务和基于自然刺激的连接性图谱可能在预测某些特征以及神经精神障碍方面表现更好。

语音与思维的“神经解码”  

这一聚类还包括在fMRI数据解码方面的显著进展,这些进展只有通过使用大型语言模型才得以实现。以往利用fMRI进行语言解码的演示局限于从有限数量的可能词序列中确定正确的输出,这是因为将缓慢的血氧水平依赖(BOLD)信号振荡(约0.1 Hz)转化为语音(通常以每秒超过2个词的速度生成)存在“病态逆问题”。在一项新的里程碑研究中,能够构建连续的词序列,捕捉感知语音、想象语音甚至无声视频的语义内容(在某些情况下甚至是确切的词语)。106  

研究人员通过使用大型语言模型生成给定词之后最有可能出现的下一个词的候选集,并计算每个候选词产生所测量到的BOLD信号的概率,从而实现了这一突破。算法并没有立即丢弃所有“落选”的候选词,而是保留了前k个候选词,并为每个前k个候选词生成更可能的下一个词。通过组合方法保留候选词串,当下一个时间点的BOLD信号可用时,这些新的候选词串再次被重新排序(图12)。

图片

图片

第8类:分子生物学

虽然在VOSViewer中,这个聚类较为分散,只有在高分辨率设置下才可见,但仍值得关注。空间转录组学在过去十年中迅速发展,它能够对整个组织样本中的单个细胞的全转录组及其空间位置进行映射。深度学习在这一快速进步中发挥了关键作用,通过实现基于基因表达模式的细胞类型高通量原位分类,同时保留细胞在组织样本中的空间位置,从而降低了成本(见图13)。除了细胞类型分类,深度学习算法还用于识别基因表达数据的空间模式,并将空间转录组学数据与其他数据(如成像)进行整合。今年的一项研究采用这种技术表明,在去核小鼠中,视觉区域细胞的转录谱向同一模块中相邻皮层区域的转录谱靠拢;这表明感觉输入对于“细化”皮层模块内区域的详细特异性转录组谱至关重要。这个例子展示了空间转录组学与实验设计相结合(在其中进行遗传或环境干扰)将为理解细胞功能、细胞间相互作用、组织结构以及疾病机制创造前所未有的机会。

图片

讨论

这项“鸟瞰式”调查使用了文献耦合方法,对神经科学领域中包含“人工智能”和“机器学习”相关关键词的研究文章和综述文章的一个子集进行了分组。相比于共引网络,文献耦合网络的一个优势在于,它对于非常近期的文章(例如过去几个月内发表的)更加有效,因为这些文章存在时间尚短,尚未被广泛引用。然而,这种方法也有其局限性(见“局限性”部分)。不过,这个“万米高空概览”的目标是提供一个人工智能在神经科学各子领域应用的近似表征,而不是准确量化这些子领域的研究活动相对水平。

在本文使用的文献计量分析方法的限制下,我们识别出了过去十年中人工智能与神经科学交叉领域的若干趋势。新的AI技术被开发为推动许多子学科进展的关键工具。例如,在过去的十年里,临床神经学应用领域出现了巨大的增长——卷积神经网络(CNN)被用于医学图像的分类和分割、图像增强以及更快的图像采集,而人工神经网络(ANN)则广泛应用于诊断和预测神经系统疾病的其他临床场景中。过去十年还见证了AI在神经“编码-解码”演示中的惊人进步,例如,CNN和大型语言模型使计算机能够实时翻译脑记录信号,无论是侵入式的还是非侵入式的(如ECoG和fMRI),转换为流利的语言、图像和表达的思想。CNN在这方面起到了关键作用,例如将来自ECoG和深度脑植入物的信号转化为残疾人士的流利语音,以及重建受试者观看的图像。大型语言模型同样在“编码-解码”fMRI信号中发挥了重要作用,用于生成人们观看的电影或阅读的故事的文字叙述。此外,在过去十年中,利用功能性磁共振成像(fMRI)和扩散数据进行脑连接性分析的努力已经扩展到个体诊断,而不仅仅是展示患者与对照组之间的“群体差异”,尤其是在神经和精神疾病领域。

在过去十年中,CNN作为一种关键的图像处理工具,使得果蝇大脑和小鼠视觉皮层的一小部分完整的神经元“接线图”得以生成。绘制整个小鼠大脑的努力正在进行中。这些高度资源密集型工作的驱动力在于,人们相信了解这些地图在突触水平上的细节,对于理解神经元群体在回路和系统层面的高阶相互作用至关重要。由此推论,理解并“逆向工程”最原始的感觉运动能力,不仅是通往更通用智能的重大进步的必要条件,也是充分条件。未来十年,很可能会看到构建AI模型的努力,这些模型将越来越符合生物神经元的复杂形态、神经递质和连接类型,这些信息正通过绘制完整神经元接线图的工作逐步揭示出来,涵盖从突触水平到整个生物体的大脑。

上述例子描述了AI在过去十年中为神经科学的各个子领域提供了新的实用工具,从而推动了新发现和成就的实现。此外,生物神经元行为的计算模型也取得了进展。大约十年前,实验技术的进步使得从物理大脑中以前所未有的空间和时间尺度获取并行原位神经元记录成为可能。这促进了计算神经科学与回路和系统神经科学之间的重叠,通过允许计算模型与实验数据之间的迭代反馈——将新计算模型的输出与新实验数据进行比较,从而实现模型验证和改进的迭代过程。例如,过去十年见证了ANN作为腹侧视觉通路、听觉皮层和其他语言区域神经元计算响应模型的进展。另一个例子是,尽管微分方程一直是描述神经过程最常见的数学方法,但现在可以利用模拟这些微分方程的循环神经网络(RNN)直接在大量新实验数据上进行训练。

图1中的不同研究出版物集群在某种程度上对应于调查的空间和时间尺度。在未来十年,AI以及其他神经影像学、脑记录技术和其它工具的技术进步无疑将继续缩小不同子学科中实验数据分辨率的时空尺度差距。然而,鉴于这些时空尺度的巨大差异,随着AI继续推进每个子学科的发展,概念上的差距可能会比时空尺度的差距更早得到填补。或许类似于经典力学、热力学、统计力学和量子力学,这些子学科将继续作为独立且基本的框架,最适于描述在大规模不同的时空观察尺度上的现象。

在此分析方法中包含的文章集合中,其他模式包括带有AI相关关键词的出版物的增长,过去十年中这类文章数量的倍增时间为4.6年,以及临床精神病学和阿尔茨海默病及其他神经退行性疾病领域与基础研究领域的显著且不断增长的重叠。

多年来,AI及其应用在普及性和可及性方面经历了显著增长。这一点在临床神经学中AI相关文章的急剧增加中尤为明显。随着AI工具的日益普及以及临床医生对其逐渐熟悉,我们预计这一趋势在未来几年只会加速。

强化学习主要被用于研究奖励与决策,相较于神经科学的其他子学科。这些模型为大脑如何将行动与奖励和惩罚联系起来,以及这种学习如何影响决策提供了见解。然而,随着AI强化学习技术在加速科学研究中的应用增加,例如AlphaFold的开发(该成果因在合成生物学领域的贡献而荣获2024年诺贝尔化学奖),我们可以期待在不久的将来涌现出大量采用这些方法的新神经科学研究和实验技术。

局限性

这项工作存在一些局限性。它是一项广泛但较为表面的调查,仅包括被Web of Science索引的期刊。一个显著的遗漏是预印本服务器(如arXiv、bioRxiv、medRxiv和PsyArXiv)上的出版物以及会议论文集中的内容。这两种形式在基础科学研究中已日益成为主要的发表方式。另一个遗漏是没有涵盖那些未处于期刊影响因子(JIF)前四分之一的神经科学出版物;其中一些是专业期刊,尽管读者群体较小,但质量极高。因此,计算神经科学和基础科学研究可能被低估,导致不同集群中出版物数量的相对偏差。此外,那些过于新而尚未获得影响因子的期刊中的文章也未被纳入。

用于对出版物进行分组的无监督聚类算法基于文献耦合,这种方法可能会将相似性较低的文章关联在一起,特别是当引用的许多出版物是关于某个广泛领域或学科的非常通用的参考文献时。文献耦合可能受到偏见的影响,例如可能存在一种倾向,即引用知名文章或高影响力期刊,即使它们与文章的具体主题相关性较弱。此外,我们在使用VOSViewer构建网络时采用了“默认”分辨率级别,因此细节层次并不特别精细。

正如所讨论的那样,有若干集群围绕临床神经疾病组织而成。这些集群可以进一步细分为更小的子集群,这将有助于识别不仅与同一种神经系统疾病或状况相关,而且在方法论(包括机器学习的类型)、分析的数据类型或其他特征上具有共同点的研究工作。

原文链接:

https://www.liebertpub.com/doi/pdf/10.1089/ains.2024.0001

阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”

https://wx.zsxq.com/group/454854145828

未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https://wx.zsxq.com/group/454854145828 进入。

截止到3月31日 ”未来知识库”精选的百部前沿科技趋势报告

(加入未来知识库,全部资料免费阅读和下载)

  1. 牛津未来研究院 《将人工智能安全视为全球公共产品的影响、挑战与研究重点》

  2. 麦肯锡:超级智能机构:赋能人们释放人工智能的全部潜力

  3. AAAI 2025 关于人工智能研究未来研究报告

  4. 斯坦福:2025 斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191 页)

  5. 壳牌:2025 能源安全远景报告:能源与人工智能(57 页)

  6. 盖洛普 & 牛津幸福研究中心:2025 年世界幸福报告(260 页)

  7. Schwab :2025 未来共生:以集体社会创新破解重大社会挑战研究报告(36 页)

  8. IMD:2024 年全球数字竞争力排名报告:跨越数字鸿沟人才培养与数字法治是关键(214 页)

  9. DS 系列专题:DeepSeek 技术溯源及前沿探索,50 页 ppt

  10. 联合国人居署:2024 全球城市负责任人工智能评估报告:利用 AI 构建以人为本的智慧城市(86 页)

  11. TechUK:2025 全球复杂多变背景下的英国科技产业:战略韧性与增长路径研究报告(52 页)

  12. NAVEX Global:2024 年十大风险与合规趋势报告(42 页)

  13. 《具身物理交互在机器人 - 机器人及机器人 - 人协作中的应用》122 页

  14. 2025 - 2035 年人形机器人发展趋势报告 53 页

  15. Evaluate Pharma:2024 年全球生物制药行业展望报告:增长驱动力分析(29 页)

  16. 【AAAI2025 教程】基础模型与具身智能体的交汇,350 页 ppt

  17. Tracxn:2025 全球飞行汽车行业市场研究报告(45 页)

  18. 谷歌:2024 人工智能短跑选手(AI Sprinters):捕捉新兴市场 AI 经济机遇报告(39 页)

  19. 【斯坦福博士论文】构建类人化具身智能体:从人类行为中学习

  20. 《基于传感器的机器学习车辆分类》最新 170 页

  21. 美国安全与新兴技术中心:2025 CSET 对美国人工智能行动计划的建议(18 页)

  22. 罗兰贝格:2024 人形机器人的崛起:从科幻到现实:如何参与潜在变革研究报告(11 页)

  23. 兰德公司:2025 从研究到现实:NHS 的研究和创新是实现十年计划的关键报告(209 页)

  24. 康桥汇世(Cambridge Associates):2025 年全球经济展望报告(44 页)

  25. 国际能源署:2025 迈向核能新时代

  26. 麦肯锡:人工智能现状,组织如何重塑自身以获取价值

  27. 威立(Wiley):2025 全球科研人员人工智能研究报告(38 页)

  28. 牛津经济研究院:2025 TikTok 对美国就业的量化影响研究报告:470 万岗位(14 页)

  29. 国际能源署(IEA):能效 2024 研究报告(127 页)

  30. Workday :2025 发挥人类潜能:人工智能(AI)技能革命研究报告(20 页)

  31. CertiK:Hack3D:2024 年 Web3.0 安全报告(28 页)

  32. 世界经济论坛:工业制造中的前沿技术:人工智能代理的崛起》报告

  33. 迈向推理时代:大型语言模型的长链推理研究综述

  34. 波士顿咨询:2025 亚太地区生成式 AI 的崛起研究报告:从技术追赶者到全球领导者的跨越(15 页)

  35. 安联(Allianz):2025 新势力崛起:全球芯片战争与半导体产业格局重构研究报告(33 页)

  36. IMT:2025 具身智能(Embodied AI)概念、核心要素及未来进展:趋势与挑战研究报告(25 页)

  37. IEEE:2025 具身智能(Embodied AI)综述:从模拟器到研究任务的调查分析报告(15 页)

  38. CCAV:2025 当 AI 接管方向盘:自动驾驶场景下的人机交互认知重构、变革及对策研究报告(124 页)

  39. 《强化学习自我博弈方法在兵棋推演分析与开发中的应用》最新 132 页

  40. 《面向科学发现的智能体人工智能:进展、挑战与未来方向综述》

  41. 全国机器人标准化技术委员会:人形机器人标准化白皮书(2024 版)(96 页)

  42. 美国国家科学委员会(NSB):2024 年研究与发展 - 美国趋势及国际比较(51 页)

  43. 艾昆纬(IQVIA):2025 骨科手术机器人技术的崛起白皮书:创新及未来方向(17 页)

  44. NPL&Beauhurst:2025 英国量子产业洞察报告:私人和公共投资的作用(25 页)

  45. IEA PVPS:2024 光伏系统经济与技术关键绩效指标(KPI)使用最佳实践指南(65 页)

  46. AGI 智能时代:2025 让 DeepSeek 更有趣更有深度的思考研究分析报告(24 页)

  47. 2025 军事领域人工智能应用场景、国内外军事人工智能发展现状及未来趋势分析报告(37 页)

  48. 华为:2025 鸿蒙生态应用开发白皮书(133 页

  49. 《超级智能战略研究报告》

  50. 中美技术差距分析报告 2025

  51. 欧洲量子产业联盟(QuIC):2024 年全球量子技术专利态势分析白皮书(34 页)

  52. 美国能源部:2021 超级高铁技术(Hyperloop)对电网和交通能源的影响研究报告(60 页)

  53. 罗马大学:2025 超级高铁(Hyperloop):第五种新型交通方式 - 技术研发进展、优势及局限性研究报告(72 页)

  54. 兰德公司:2025 灾难性网络风险保险研究报告:市场趋势与政策选择(93 页)

  55. GTI:2024 先进感知技术白皮书(36 页)

  56. AAAI:2025 人工智能研究的未来报告:17 大关键议题(88 页)

  57. 安联 Allianz2025 新势力崛起全球芯片战争与半导体产业格局重构研究报告

  58. 威达信:2025 全球洪水风险研究报告:现状、趋势及应对措施(22 页)

  59. 兰德公司:迈向人工智能治理研究报告:2024EqualAI 峰会洞察及建议(19 页)

  60. 哈佛商业评论:2025 人工智能时代下的现代软件开发实践报告(12 页)

  61. 德安华:全球航空航天、国防及政府服务研究报告:2024 年回顾及 2025 年展望(27 页)

  62. 奥雅纳:2024 塑造超级高铁(Hyperloop)的未来:监管如何推动发展与创新研究报告(28 页)

  63. HSOAC:2025 美国新兴技术与风险评估报告:太空领域和关键基础设施(24 页)

  64. Dealroom:2025 欧洲经济与科技创新发展态势、挑战及策略研究报告(76 页)

  65. 《无人机辅助的天空地一体化网络:学习算法技术综述》

  66. 谷歌云(Google Cloud):2025 年 AI 商业趋势白皮书(49 页)

  67. 《新兴技术与风险分析:太空领域与关键基础设施》最新报告

  68. 150 页!《DeepSeek 大模型生态报告》

  69. 军事人工智能行业研究报告:技术奇点驱动应用加速智能化重塑现代战争形态 - 250309(40 页)

  70. 真格基金:2024 美国独角兽观察报告(56 页)

  71. 璞跃(Plug and Play):2025 未来商业研究报告:六大趋势分析(67 页)

  72. 国际电工委员会(IEC):2025 智能水电技术与市场展望报告(90 页)

  73. RWS:2025 智驭 AI 冲击波:人机协作的未来研究报告(39 页)

  74. 国际电工委员会(IEC):2025 智能水电技术与市场展望报告(90 页)

  75. RWS:2025 智驭 AI 冲击波:人机协作的未来研究报告(39 页)

  76. 未来今日研究所 2025 年科技趋势报告第 18 版 1000 页

  77. 模拟真实世界:多模态生成模型的统一综述

  78. 中国信息协会低空经济分会:低空经济发展报告(2024 - 2025)(117 页)

  79. 浙江大学:2025 语言解码双生花:人类经验与 AI 算法的镜像之旅(42 页)

  80. 人形机器人行业:由 “外” 到 “内” 智能革命 - 250306(51 页)

  81. 大成:2025 年全球人工智能趋势报告:关键法律问题(28 页)

  82. 北京大学:2025 年 DeepSeek 原理和落地应用报告(57 页)

  83. 欧盟委员会 人工智能与未来工作研究报告

  84. 加州大学伯克利分校:面向科学发现的多模态基础模型:在化学、材料和生物学中的应用

  85. 电子行业:从柔性传感到人形机器人触觉革命 - 250226(35 页)

  86. RT 轨道交通:2024 年中国城市轨道交通市场数据报告(188 页)

  87. FastMoss:2024 年度 TikTok 生态发展白皮书(122 页)

  88. Check Point:2025 年网络安全报告 - 主要威胁、新兴趋势和 CISO 建议(57 页)

  89. 【AAAI2025 教程】评估大型语言模型:挑战与方法,199 页 ppt

  90. 《21 世纪美国的主导地位:核聚变》最新报告

  91. 沃尔特基金会(Volta Foundation):2024 年全球电池行业年度报告(518 页)

  92. 斯坦福:2025 斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191 页)

  93. 国际科学理事会:2025 为人工智能做好国家研究生态系统的准备 - 2025 年战略与进展报告(英文版)(118 页)

  94. 光子盒:2025 全球量子计算产业发展展望报告(184 页)

  95. 奥纬论坛:2025 塑造未来的城市研究报告:全球 1500 个城市的商业吸引力指数排名(124 页)

  96. Future Matters:2024 新兴技术与经济韧性:日本未来发展路径前瞻报告(17 页)

  97. 《人类与人工智能协作的科学与艺术》284 页博士论文

  98. 《论多智能体决策的复杂性:从博弈学习到部分监控》115 页

  99. 《2025 年技术展望》56 页 slides

  100. 大语言模型在多智能体自动驾驶系统中的应用:近期进展综述

  101. 【牛津大学博士论文】不确定性量化与因果考量在非策略决策制定中的应用

  102. 皮尤研究中心:2024 美国民众对气候变化及应对政策的态度调研报告:气候政策对美国经济影响的多元观点审视(28 页)

  103. 空间计算行业深度:发展趋势、关键技术、行业应用及相关公司深度梳理 - 250224(33 页)

  104. Gartner:2025 网络安全中的 AI:明确战略方向研究报告(16 页)

  105. 北京大学:2025 年 DeepSeek 系列报告 - 提示词工程和落地场景(86 页)

  106. 北京大学:2025 年 DeepSeek 系列报告 - DeepSeek 与 AIGC 应用(99 页)

  107. CIC 工信安全:2024 全球人工智能立法的主要模式、各国实践及发展趋势研究报告(42 页)

  108. 中科闻歌:2025 年人工智能技术发展与应用探索报告(61 页)

  109. AGI 智能时代:2025 年 Grok - 3 大模型:技术突破与未来展望报告(28 页)

上下滑动查看更多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值