来源:学术头条
作者:学术君
当前的人工神经网络只是对生物神经网络的极其简化模拟,在能力和效率方面远远落后于人脑。
我们能否进一步结合生物大脑中的特征,将人工智能(AI)的能力和效率提升到新的水平?
受生物神经网络的启发,由“Transformer八子”之一 Llion Jones 联合创立 Sakana AI 提出了一种新型人工神经网络——“连续思维机器”(Continuous Thought Machine,CTM)。
与传统人工神经网络不同,CTM 将神经元活动同步作为核心推理机制,在神经元层面使用时序(timing)信息,从而实现了更复杂的神经行为和决策过程。
研究表明,CTM 能够逐步“思考”问题,在各种任务中解决问题的能力和效率都有所提高,其推理过程也具有可解释性,更像人一般。
视频|CTM 如人类一般解迷宫和思考真实图像。
相关研究论文以“Continuous Thought Machines”为题,已发表在预印本网站 arXiv 上。
研究团队认为,CTM 是弥合人工神经网络与生物神经网络之间鸿沟的重要一步,有望开启人工智能能力的新领域。
CTM:可解释、智能涌现
尽管深度学习推动了人工智能领域的变革式发展,但自 20 世纪 80 年代以来,人工智能模型中使用的人工神经元的基础模型在很大程度上没有变化,仍然主要使用神经元的单一输出(代表神经元的放电情况),忽略了神经元相对于其他神经元放电的精确时间。
然而,强有力的证据表明,这种时序信息在生物大脑中至关重要。
在 CTM 模型中,神经元可以访问自己的行为历史,并学习如何利用这些信息来计算自己的下一个输出,而不是仅仅知道自己的当前状态。这样,神经元就能根据过去不同时期的信息改变自己的行为。此外,CTM 的主要行为是基于这些神经元之间的同步,这意味着它们必须学会利用这些时序信息来协调完成任务。与传统模型中可被观察到的情况相比,这将产生更丰富的动态空间和不同的任务解决行为。
在添加了这种时序信息后,研究团队观察到了高度可解释的行为。例如,在浏览图像时,CTM 会仔细地将视线在场景中移动,并选择关注最显著的特征。
据论文描述,CTM 的行为基于一种新的表征:神经元之间随时间的同步。这更容易让人联想到生物大脑,但并非严格意义上的仿真。于是,CTM 能够利用这种新的时间维度、丰富的神经元动态和同步信息来“思考”任务,并在给出答案前制定计划。“连续”则表示 CTM 的推理完全在内部“思考维度”运行。对于所使用的数据,它是异步的:能够以相同的方式对静态数据(如图像)或序列数据进行推理。
研究团队表示,他们观察到的神经元动态在某种程度上更像是在真实大脑中测量到的动态,而不是更传统的人工神经网络,后者表现出的行为多样性要少得多。CTM 显示了以不同频率和振幅振荡的神经元。有时,单个神经元会出现不同频率的振荡,而其他神经元只有在完成任务时才会出现活动。
值得强调的是,所有这些行为都是完全涌现的,并没有被设计到模型中。
图|CTM 的神经动态与当前主流人工神经网络的动态对比。
像人一样求解迷宫、识别图像
由于有了新的时间维度,CTM 的一大优势在于,我们可以观察并直观地看到它是如何随着时间的推移解决问题的。
传统的人工智能系统可能只需通过一次神经网络就能对图像进行分类,而 CTM 则不同,它可以采取多个步骤来“思考”如何解决任务。
研究团队展示了两个任务:迷宫求解和照片中的物体分类。
1.迷宫求解
在这项任务中,CTM 会看到一个自上而下的二维迷宫,并被要求输出求解迷宫所需的步骤。这种形式特别具有挑战性,因为模型必须建立对迷宫结构的理解并规划解决方案,而不仅仅是输出路径的视觉呈现。CTM 的内部连续“思考步骤”允许它制定计划,它在每个思考步骤中关注迷宫的哪些部分可以被直观得观察到。值得注意的是,CTM 学会了一种非常类似人类的求解迷宫的方法——从它的注意力模式来看,它实际上是在沿着迷宫的路径前进。
视频|CTM 通过观察(利用注意力)和直接产生步骤(如向左、向右等)来求解迷宫问题。它直接利用神经动态同步(即利用同步本身的线性探针)来实现目的。
尤其令人印象深刻的是,这种行为是在模型架构中自然产生的。研究团队并没有明确设计 CTM 在迷宫中追踪路径,它是通过学习自行开发出这种方法的。
此外,研究团队还发现,当允许有更多思考步骤时,CTM 会继续沿着路径前进,超过了训练它这样做的时间点,这表明它确实已经学会了这个问题的通用解决方案。
2.图像识别
另一方面,研究团队以 ImageNet 基准为例,展示了 CTM 在图像识别方面的能力。
传统的图像识别系统只需一步就能做出分类决定,但 CTM 在做出决定前会采取多个步骤检查图像的不同部分。这种循序渐进的方法不仅使人工智能的行为更具可解释性,还提高了准确性:“思考”的时间越长,答案就越准确。
研究团队还发现,这可以让 CTM 决定在更简单的图像上花费更少的思考时间,从而节省能源。例如,在识别大猩猩时,CTM 的注意力从眼睛到鼻子再到嘴巴,其模式与人类的视觉注意力非常相似。
视频|CTM 在对图像进行分类时的行为示例。热图显示了 CTM 在处理图像时的关注点,箭头表示关注点的中心。
研究团队表示,这些注意力模式有助于我们了解模型的推理过程,了解模型认为哪些特征与分类最为相关。这种可解释性不仅对理解模型的决策很有价值,而且对识别和解决偏差或失败模式也很有潜力。
更多交互案例请查阅官方交互报告:
https://pub.sakana.ai/ctm/
生物学+计算技术,更强、更高效
尽管现代人工智能是以大脑为基础的“人工神经网络”,但即使在今天,人工智能研究与神经科学之间的重叠也少得令人吃惊。主要原因包括以下两点:
一方面,人工智能研究人员依然选择沿用 80 年代开发的非常简单的模型,因为它简单、训练高效,并能持续成功地推动人工智能的进步。
另一方面,神经科学创建了更加精确的大脑模型,但主要目的是为了理解大脑,而非试图创建更智能的模型,因而性能远低于当前的传统人工智能模型。
“CTM 是我们在这两个领域之间架起桥梁的首次尝试,它初步显示了一些更像大脑的行为,同时仍然是解决重要问题的实用人工智能模型。”
研究团队认为,有了 CTM 的这次尝试,我们可能会通过这种方式构建能力更强、效率更高的模型。
阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”
https://wx.zsxq.com/group/454854145828
未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https://wx.zsxq.com/group/454854145828 进入。

截止到3月31日 ”未来知识库”精选的百部前沿科技趋势报告
(加入未来知识库,全部资料免费阅读和下载)
牛津未来研究院 《将人工智能安全视为全球公共产品的影响、挑战与研究重点》
麦肯锡:超级智能机构:赋能人们释放人工智能的全部潜力
AAAI 2025 关于人工智能研究未来研究报告
斯坦福:2025 斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191 页)
壳牌:2025 能源安全远景报告:能源与人工智能(57 页)
盖洛普 & 牛津幸福研究中心:2025 年世界幸福报告(260 页)
Schwab :2025 未来共生:以集体社会创新破解重大社会挑战研究报告(36 页)
IMD:2024 年全球数字竞争力排名报告:跨越数字鸿沟人才培养与数字法治是关键(214 页)
DS 系列专题:DeepSeek 技术溯源及前沿探索,50 页 ppt
联合国人居署:2024 全球城市负责任人工智能评估报告:利用 AI 构建以人为本的智慧城市(86 页)
TechUK:2025 全球复杂多变背景下的英国科技产业:战略韧性与增长路径研究报告(52 页)
NAVEX Global:2024 年十大风险与合规趋势报告(42 页)
《具身物理交互在机器人 - 机器人及机器人 - 人协作中的应用》122 页
2025 - 2035 年人形机器人发展趋势报告 53 页
Evaluate Pharma:2024 年全球生物制药行业展望报告:增长驱动力分析(29 页)
【AAAI2025 教程】基础模型与具身智能体的交汇,350 页 ppt
Tracxn:2025 全球飞行汽车行业市场研究报告(45 页)
谷歌:2024 人工智能短跑选手(AI Sprinters):捕捉新兴市场 AI 经济机遇报告(39 页)
【斯坦福博士论文】构建类人化具身智能体:从人类行为中学习
《基于传感器的机器学习车辆分类》最新 170 页
美国安全与新兴技术中心:2025 CSET 对美国人工智能行动计划的建议(18 页)
罗兰贝格:2024 人形机器人的崛起:从科幻到现实:如何参与潜在变革研究报告(11 页)
兰德公司:2025 从研究到现实:NHS 的研究和创新是实现十年计划的关键报告(209 页)
康桥汇世(Cambridge Associates):2025 年全球经济展望报告(44 页)
国际能源署:2025 迈向核能新时代
麦肯锡:人工智能现状,组织如何重塑自身以获取价值
威立(Wiley):2025 全球科研人员人工智能研究报告(38 页)
牛津经济研究院:2025 TikTok 对美国就业的量化影响研究报告:470 万岗位(14 页)
国际能源署(IEA):能效 2024 研究报告(127 页)
Workday :2025 发挥人类潜能:人工智能(AI)技能革命研究报告(20 页)
CertiK:Hack3D:2024 年 Web3.0 安全报告(28 页)
世界经济论坛:工业制造中的前沿技术:人工智能代理的崛起》报告
迈向推理时代:大型语言模型的长链推理研究综述
波士顿咨询:2025 亚太地区生成式 AI 的崛起研究报告:从技术追赶者到全球领导者的跨越(15 页)
安联(Allianz):2025 新势力崛起:全球芯片战争与半导体产业格局重构研究报告(33 页)
IMT:2025 具身智能(Embodied AI)概念、核心要素及未来进展:趋势与挑战研究报告(25 页)
IEEE:2025 具身智能(Embodied AI)综述:从模拟器到研究任务的调查分析报告(15 页)
CCAV:2025 当 AI 接管方向盘:自动驾驶场景下的人机交互认知重构、变革及对策研究报告(124 页)
《强化学习自我博弈方法在兵棋推演分析与开发中的应用》最新 132 页
《面向科学发现的智能体人工智能:进展、挑战与未来方向综述》
全国机器人标准化技术委员会:人形机器人标准化白皮书(2024 版)(96 页)
美国国家科学委员会(NSB):2024 年研究与发展 - 美国趋势及国际比较(51 页)
艾昆纬(IQVIA):2025 骨科手术机器人技术的崛起白皮书:创新及未来方向(17 页)
NPL&Beauhurst:2025 英国量子产业洞察报告:私人和公共投资的作用(25 页)
IEA PVPS:2024 光伏系统经济与技术关键绩效指标(KPI)使用最佳实践指南(65 页)
AGI 智能时代:2025 让 DeepSeek 更有趣更有深度的思考研究分析报告(24 页)
2025 军事领域人工智能应用场景、国内外军事人工智能发展现状及未来趋势分析报告(37 页)
华为:2025 鸿蒙生态应用开发白皮书(133 页
《超级智能战略研究报告》
中美技术差距分析报告 2025
欧洲量子产业联盟(QuIC):2024 年全球量子技术专利态势分析白皮书(34 页)
美国能源部:2021 超级高铁技术(Hyperloop)对电网和交通能源的影响研究报告(60 页)
罗马大学:2025 超级高铁(Hyperloop):第五种新型交通方式 - 技术研发进展、优势及局限性研究报告(72 页)
兰德公司:2025 灾难性网络风险保险研究报告:市场趋势与政策选择(93 页)
GTI:2024 先进感知技术白皮书(36 页)
AAAI:2025 人工智能研究的未来报告:17 大关键议题(88 页)
安联 Allianz2025 新势力崛起全球芯片战争与半导体产业格局重构研究报告
威达信:2025 全球洪水风险研究报告:现状、趋势及应对措施(22 页)
兰德公司:迈向人工智能治理研究报告:2024EqualAI 峰会洞察及建议(19 页)
哈佛商业评论:2025 人工智能时代下的现代软件开发实践报告(12 页)
德安华:全球航空航天、国防及政府服务研究报告:2024 年回顾及 2025 年展望(27 页)
奥雅纳:2024 塑造超级高铁(Hyperloop)的未来:监管如何推动发展与创新研究报告(28 页)
HSOAC:2025 美国新兴技术与风险评估报告:太空领域和关键基础设施(24 页)
Dealroom:2025 欧洲经济与科技创新发展态势、挑战及策略研究报告(76 页)
《无人机辅助的天空地一体化网络:学习算法技术综述》
谷歌云(Google Cloud):2025 年 AI 商业趋势白皮书(49 页)
《新兴技术与风险分析:太空领域与关键基础设施》最新报告
150 页!《DeepSeek 大模型生态报告》
军事人工智能行业研究报告:技术奇点驱动应用加速智能化重塑现代战争形态 - 250309(40 页)
真格基金:2024 美国独角兽观察报告(56 页)
璞跃(Plug and Play):2025 未来商业研究报告:六大趋势分析(67 页)
国际电工委员会(IEC):2025 智能水电技术与市场展望报告(90 页)
RWS:2025 智驭 AI 冲击波:人机协作的未来研究报告(39 页)
国际电工委员会(IEC):2025 智能水电技术与市场展望报告(90 页)
RWS:2025 智驭 AI 冲击波:人机协作的未来研究报告(39 页)
未来今日研究所 2025 年科技趋势报告第 18 版 1000 页
模拟真实世界:多模态生成模型的统一综述
中国信息协会低空经济分会:低空经济发展报告(2024 - 2025)(117 页)
浙江大学:2025 语言解码双生花:人类经验与 AI 算法的镜像之旅(42 页)
人形机器人行业:由 “外” 到 “内” 智能革命 - 250306(51 页)
大成:2025 年全球人工智能趋势报告:关键法律问题(28 页)
北京大学:2025 年 DeepSeek 原理和落地应用报告(57 页)
欧盟委员会 人工智能与未来工作研究报告
加州大学伯克利分校:面向科学发现的多模态基础模型:在化学、材料和生物学中的应用
电子行业:从柔性传感到人形机器人触觉革命 - 250226(35 页)
RT 轨道交通:2024 年中国城市轨道交通市场数据报告(188 页)
FastMoss:2024 年度 TikTok 生态发展白皮书(122 页)
Check Point:2025 年网络安全报告 - 主要威胁、新兴趋势和 CISO 建议(57 页)
【AAAI2025 教程】评估大型语言模型:挑战与方法,199 页 ppt
《21 世纪美国的主导地位:核聚变》最新报告
沃尔特基金会(Volta Foundation):2024 年全球电池行业年度报告(518 页)
斯坦福:2025 斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191 页)
国际科学理事会:2025 为人工智能做好国家研究生态系统的准备 - 2025 年战略与进展报告(英文版)(118 页)
光子盒:2025 全球量子计算产业发展展望报告(184 页)
奥纬论坛:2025 塑造未来的城市研究报告:全球 1500 个城市的商业吸引力指数排名(124 页)
Future Matters:2024 新兴技术与经济韧性:日本未来发展路径前瞻报告(17 页)
《人类与人工智能协作的科学与艺术》284 页博士论文
《论多智能体决策的复杂性:从博弈学习到部分监控》115 页
《2025 年技术展望》56 页 slides
大语言模型在多智能体自动驾驶系统中的应用:近期进展综述
【牛津大学博士论文】不确定性量化与因果考量在非策略决策制定中的应用
皮尤研究中心:2024 美国民众对气候变化及应对政策的态度调研报告:气候政策对美国经济影响的多元观点审视(28 页)
空间计算行业深度:发展趋势、关键技术、行业应用及相关公司深度梳理 - 250224(33 页)
Gartner:2025 网络安全中的 AI:明确战略方向研究报告(16 页)
北京大学:2025 年 DeepSeek 系列报告 - 提示词工程和落地场景(86 页)
北京大学:2025 年 DeepSeek 系列报告 - DeepSeek 与 AIGC 应用(99 页)
CIC 工信安全:2024 全球人工智能立法的主要模式、各国实践及发展趋势研究报告(42 页)
中科闻歌:2025 年人工智能技术发展与应用探索报告(61 页)
AGI 智能时代:2025 年 Grok - 3 大模型:技术突破与未来展望报告(28 页)
上下滑动查看更多