格蕾特·赫尔曼:挑战海森堡与冯·诺伊曼的量子物理学家

来源:返朴

编译:程欢

图片

伟大的思想家 图为格蕾特·赫尔曼,拍摄于1955年,她是最早思考量子力学哲学意义的科学家之一。(摄影:Lohrisch-Achilles,来源:不来梅州档案馆)

量子力学诞生之初,它的颠覆性本质让许多物理学家难以接受,即使量子力学理论已经取得不少成功。1925年,沃纳·海森堡率先构建起量子力学的完整数学框架;次年,埃尔温·薛定谔(Erwin Schrödinger)利用其同名方程成功推演出氢原子光谱。这些成就令人振奋,但问题也接踵而至。

长期以来,物理学家们习惯了艾萨克·牛顿(Isaac Newton)的机械宇宙观,认为相同的系统随时间推移,必然以完全相同的方式演化,即具有“确定性”。然而,海森堡的不确定性原理与薛定谔波函数的概率性本质凸显了这一观念的缺陷。1935年,阿尔伯特·爱因斯坦(Albert Einstein)、鲍里斯·波多尔斯基(Boris Podolsky)和纳森·罗森(Nathan Rosen)在著名的“EPR佯谬”论文(《物理评论》第47卷第777页)中表达了这些疑虑,爱因斯坦与尼尔斯·玻尔(Niels Bohr)的辩论中也有所涉及。

争议的核心不仅仅是物理学家之间的分歧,还触及更深层的哲学问题:我们是否生活在一个确定性的宇宙中?人类是否真正拥有自由意志,以及因果律的核心地位。德国数学家兼哲学家格蕾特·赫尔曼(1901–1984)是系统探讨这些量子理论问题的学者之一。

在那个女性鲜少涉足物理学或哲学(更遑论两者兼修)的时代,赫尔曼的成就尤为瞩目。2022年出版的《牛津量子诠释史手册》中,纽约城市大学科学哲学家埃莉斯·克鲁尔(Elise Crull)称赫尔曼的研究是“对量子力学最早、且最精妙的哲学论述之一”。

赫尔曼推翻了匈牙利裔美国数学家兼物理学家约翰·冯·诺伊曼提出的著名“证明”——该证明声称量子力学中“隐变量”不可能存在。然而,为什么赫尔曼对量子物理的根基与意义的研究成就长期被忽视?2025年正值国际量子科学与技术年,是时候揭开答案了。

自由的思想家

赫尔曼于1901年3月2日出生于德国北部港口城市不来梅,是七个孩子中的一个。母亲虔诚信仰宗教,父亲是商人、水手,后来成为巡回传教士。父亲的育儿信条是“我以自由养育子女!”(《格蕾特·赫尔曼:物理与哲学之间》)。父亲支持赫尔曼发展广泛的兴趣爱好,也充分利用了当时对女性开放的最优教育资源。

1921年,赫尔曼取得高中教师资格,随后进入哥廷根大学学习数学、物理和哲学。仅四年后,她便在杰出的数学家埃米·诺特(Emmy Noether)的指导下获得博士学位。诺特因诺特定理(将对称性与物理守恒定律联系起来的开创性定理)闻名。赫尔曼的最终口试(1925年)不仅包括数学(其博士论文主题),还涉及物理和哲学。她特别要求由哲学家莱昂纳德·尼尔森(Leonard Nelson)考核哲学部分,因为他讲座中“逻辑的锋芒”令她印象深刻。

图片

学科交融  格蕾特·赫尔曼对物理学与哲学的深层交融深感着迷。(图片来源:iStock/agsandrew)

此时,赫尔曼对哲学的兴趣开始超越其对数学的投入。尽管诺特为她在弗莱堡大学谋得数学教职,她却选择成为尼尔森的助手,负责编辑他的哲学著作。“她学了数学四年,”诺特感叹道,“却突然发现了自己有颗哲学之心!”

赫尔曼认为尼尔森要求严苛,有时甚至专横,但她也获益匪浅。赫尔曼似乎在追寻一条通通往内在真理发现的路径,类似于爱因斯坦的“思想实验”。1927年尼尔森去世(年仅45岁)后,赫尔曼留在哥廷根,继续编辑并扩展他的哲学著作及相关政治思想。尼尔森倡导一种基于伦理推理的社会主义,旨在构建公正社会。尼尔森与他人共同创立了一个政治行动团体,并成立了“哲学-政治学院”(PPA)以传播其思想。赫尔曼参与这些工作的同时,还为PPA的反纳粹报纸撰稿。

赫尔曼参与尼尔森创立的组织后,辗转德国多地。但1933年希特勒掌权后,纳粹封禁了PPA,赫尔曼与社会主义同僚计划逃离德国。起初,她居住在丹麦的PPA“流亡学校”。随着纳粹开始逮捕社会主义者,赫尔曼担心德国可能占领丹麦,于是再次搬离,先到了巴黎,之后又去了伦敦。

1938年初,赫尔曼抵达英国,结识了同为社会主义者的爱德华·亨利(Edward Henry),后来与其结婚。不过,这只是一段权宜婚姻,旨在帮助赫尔曼获得英国国籍——1939年第二次世界大战爆发后,她因此免于被当作“敌国侨民”拘留(战后两人离婚)。尽管历经种种动荡,赫尔曼仍以哲学与数学的双重视角持续研究物理学,尤其是量子力学。

哲学与物理的交融

赫尔曼工作的主要推动力来自1934年与海森堡及其助手卡尔·弗里德里希·冯·魏茨泽克(Carl Friedrich von Weizsäcker,当时任职于莱比锡理论物理研究所)的讨论。早在前一年,赫尔曼已撰写过一篇题为《决定论与量子力学》的论文,分析了量子力学的不确定性——“哥本哈根诠释”中关于量子行为的核心观点,是否对因果律概念构成了挑战。

因果律历来为物理学家所推崇,它主张每个事件必有原因,且特定原因必然导致特定结果。因果律也是18世纪德国哲学家伊曼努尔·康德(Immanuel Kant)的核心思想——他1781年的名著《纯粹理性批判》广为人知。他认为,因果律是人类组织经验、理解世界的基础。

与尼尔森一样,赫尔曼是“新康德主义者”,主张以科学严谨性对待康德思想。在1933年的一篇论文中,她探讨了哥本哈根诠释如何削弱了康德的因果律。尽管这篇文章当时未能正式发表,但她将副本寄给了海森堡、冯·魏茨泽克、玻尔,以及当时在剑桥大学任职的保罗·狄拉克(Paul Dirac)(这篇论文的副本就是在狄拉克的档案中被发现的)。1933年物理学家古斯塔夫·赫克曼(Gustav Heckmann)写给赫尔曼信中称海森堡、冯·魏茨泽克和玻尔均“绝对认真对待”她的论文。海森堡还称赞赫尔曼是“一位极其聪慧的女性”。

赫克曼建议赫尔曼与海森堡更深入讨论其观点。1934年,赫尔曼赴莱比锡拜访海森堡与冯·魏茨泽克。海森堡在1971年的回忆录《物理与超越:邂逅与对话》中记录了这次交流。在该书中,海森堡提到赫尔曼是如何严谨地对待哲学问题。“(她)认为自己能够证明,因果律在康德所给出的形式下,是牢不可破的,”海森堡回忆道。“而现在,新的量子力学似乎在挑战康德的观念,因此她决定与我们辩论个彻底。”

这次交流并非争执,而是一次充满活力的讨论,赫尔曼提出了尖锐的问题。例如,海森堡举例,镭原子随机释放电子是一个不可预测的随机事件,且没有原因。赫尔曼反驳道:尚未找到原因,并不意味着原因不存在。

值得注意的是,这里赫尔曼提到的是我们现在所称的“隐变量”——即量子力学可能受其他未知参数支配的观点。海森堡则辩称,即使有这样的原因,就算我们知道这些原因,也会因为电子的波动性质而导致其他实验中的复杂性。

图片

思想先驱  格蕾特·赫尔曼是最早研究“隐变量”概念的学者之一,即量子力学可能受未知参数支配。(图片来源:iStock/pobytov)

假设通过隐变量能精确预测电子的运动方向,那么电子波就无法自我分裂并发生干涉,导致电子湮灭。但实验中确实已观测到电子干涉效应,这被海森堡视为量子力学本身就已完备、无需引入额外隐变量的证据。对此,赫尔曼再次指出海森堡论证中的矛盾。

最终,双方都未能完全说服彼此,但赫尔曼的见解令海森堡印象深刻。他在回忆录中总结道:“我们都从康德哲学与现代科学的关系中学到了许多。”赫尔曼本人在1935年的论文《量子力学的自然哲学基础》(发表于冷门哲学期刊《弗里斯学派论文集》6卷69页)中向海森堡致谢“他愿意探讨量子力学的基础问题,这对于本研究至关重要”。

量子不确定性与因果律

在1933年的论文中,赫尔曼试图厘清量子力学的不确定性是否会威胁因果律。她的核心结论是:在量子力学中,所有涉及不确定性的地方,在逻辑上并不是理论必不可少的一部分。因此,她并没有断言量子理论支持因果律,但为这一可能性保留了空间。

在关于隐变量的论证中,赫尔曼凭借自己的数学功底指出了冯·诺伊曼1932年著名证明的漏洞。冯·诺伊曼认为,任何隐变量理论均无法复制量子力学的特征,量子力学本身是完备的,无需额外添加确定性参数。

随后的几十年里,冯·诺伊曼的这一证明被奉为“证据”,用以证明任何对量子力学的确定性补充都是错误的。在冯·诺伊曼的天才数学家的盛誉之下,几乎无人质疑他的论证。但到了1964年,北爱尔兰理论物理学家约翰·贝尔 (John Bell) 提出,隐变量理论确实是可能存在的,只不过这种理论必须是“非局域性的”(《物理学》1卷195页)。

非局域性指在宇宙的不同地点,事件可以同步发生,而不需要超光速通信。爱因斯坦一直不喜欢非局域性的概念,但实验上已经广泛证实了它的存在,并成为量子物理的标志性特征,也是量子技术的核心基础。

1966年,贝尔重新审视冯·诺伊曼的论证并发现一处关键错误,彻底推翻了其证明(《现代物理评论》38卷447页)。换句话说,贝尔证明了量子力学是可容纳隐变量的——这一发现为量子力学的其他诠释打开了大门。然而,早在1933年的论文中,赫尔曼就已经指出了同样的错误,并在1935年的文章中再次清晰地阐述了这一点,其表述几乎与贝尔三十多年后的质疑不谋而合。

她是第一个发现这个错误的人,比贝尔早了30年。

根据赫尔曼的论述,冯·诺伊曼1933年关于“量子力学无需隐变量”的证明成败系于其对“期望值”的假设。赫尔曼指出,这一假设在经典物理中成立,但在量子力学中更为复杂。赫尔曼的分析以及后来贝尔更为详尽的论述,揭示了冯·诺伊曼证明的局限性,但最早捕捉到这一错误本质的人,是赫尔曼。贝尔并没有认识到赫尔曼的工作,也没有在文中引用她,很可能因为她的工作在1966年后才逐渐为物理学界所知。

因果律的新视角

赫尔曼在1935年文章中反驳了冯·诺伊曼的证明后,并没有继续转向发展隐变量理论,而是出人意料地提出另一种观点——很可能是受到与海森堡讨论的影响。她接受量子力学是是一套完整的理论,只能给出统计性的预测,但她提出了在这一框架下对因果律的另一种理解。

她在论文中写道,在统计性的量子力学中,我们无法预知精确的因果链,但一旦测量获得确定结果,便可逆向推导导致该结果的原因。赫尔曼通过多个案例具体展示了如何操作。这种思路下,她始终认为量子力学并未推翻康德所提出的普遍因果律范畴。

赫尔曼的1935年论文不仅动摇了冯·诺伊曼的证明,还展现出对哥本哈根诠释元素(如对应原理)的深刻理解。对应原理主张:在量子数很大的极限下,从量子力学推导出的结果必定趋近于经典物理学的结果。

这篇论文还表明,赫尔曼不仅完全理解了海森堡用以说明不确定性原理的思想实验,还进一步拓展了其含义。海森堡设想了一个光子与电子碰撞的情形,但在碰撞之后,赫尔曼写道,整个物理系统的波函数成为各个项的线性组合,每一项都是“一个描述电子的波函数和一个描述光量子的波函数的乘积”

她进一步指出:“因此,光量子和电子并不是各自独立地被描述,而只能在彼此的关系中被描述。每一个光量子的状态都对应着一个电子的状态。”令人惊讶的是,这实际上已经接近于对量子纠缠的早期认知——薛定谔于1935年稍晚才提出并命名该现象。不过,目前没有证据表明薛定谔知晓赫尔曼的见解。

赫尔曼的遗产

在量子力学完整理论诞生百年之际,我们应如何铭记赫尔曼?克鲁尔指出,量子力学早期奠基者“虽然提出了关于其理论意义的哲学性问题,但没有人同时受过物理学和哲学的完整训练”。而赫尔曼恰恰是这两方面的专家。“只有拥有赫尔曼那样训练和洞察力的人,才能完成这样一篇杰出的量子力学哲学分析,”克鲁尔评价道。

遗憾的是,尽管赫尔曼将1935年论文寄给多位物理学家,但并未引起注意。否则,她的工作或许足以改变量子力学的早期发展。重读这篇论文,可以看到赫尔曼敏锐而严谨的逻辑推演,以及推演下的新颖理解。

赫尔曼留下的遗产不止于此。二战末期,她开始撰写关于科学伦理的著作,着重批判纳粹统治下的科研方式。战后她返回德国,投身于教育学与教师培训,通过重建的哲学-政治学院传播尼尔森的思想以及她自己的理念,并担任政府职务,致力于重建德国的教育体系——根据当时的文献记载,她的工作成效显著。

赫尔曼还以社会民主党顾问身份活跃于政坛。她一直保持着对量子力学的兴趣,但尚不清楚她晚年是否还在深入地从事这方面的研究。晚年她回到不来梅,照顾一位早年社会主义运动中的同志。

赫尔曼的成就第一次引起广泛关注是在1974年,当时物理学家兼科学史学家马克斯·贾默(Max Jammer)在其著作《量子力学的哲学》中提及她对冯·诺伊曼证明的批评。1984年4月15日赫尔曼在不来梅逝世后,学界对其关注度与日俱增,2016年《格蕾特·赫尔曼:物理与哲学之间》问世。这位深刻的思想者,一生致力于教育他人、追求社会正义,其生平至今激励着科学家与哲学家。

本文经授权转载自微信公众号“墨子沙龙”。

原文来源:

https://physicsworld.com/a/grete-hermann-the-quantum-physicist-who-challenged-werner-heisenberg-and-john-von-neumann/

阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”

https://wx.zsxq.com/group/454854145828

未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https://wx.zsxq.com/group/454854145828 进入。

截止到3月31日 ”未来知识库”精选的百部前沿科技趋势报告

(加入未来知识库,全部资料免费阅读和下载)

  1. 牛津未来研究院 《将人工智能安全视为全球公共产品的影响、挑战与研究重点》

  2. 麦肯锡:超级智能机构:赋能人们释放人工智能的全部潜力

  3. AAAI 2025 关于人工智能研究未来研究报告

  4. 斯坦福:2025 斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191 页)

  5. 壳牌:2025 能源安全远景报告:能源与人工智能(57 页)

  6. 盖洛普 & 牛津幸福研究中心:2025 年世界幸福报告(260 页)

  7. Schwab :2025 未来共生:以集体社会创新破解重大社会挑战研究报告(36 页)

  8. IMD:2024 年全球数字竞争力排名报告:跨越数字鸿沟人才培养与数字法治是关键(214 页)

  9. DS 系列专题:DeepSeek 技术溯源及前沿探索,50 页 ppt

  10. 联合国人居署:2024 全球城市负责任人工智能评估报告:利用 AI 构建以人为本的智慧城市(86 页)

  11. TechUK:2025 全球复杂多变背景下的英国科技产业:战略韧性与增长路径研究报告(52 页)

  12. NAVEX Global:2024 年十大风险与合规趋势报告(42 页)

  13. 《具身物理交互在机器人 - 机器人及机器人 - 人协作中的应用》122 页

  14. 2025 - 2035 年人形机器人发展趋势报告 53 页

  15. Evaluate Pharma:2024 年全球生物制药行业展望报告:增长驱动力分析(29 页)

  16. 【AAAI2025 教程】基础模型与具身智能体的交汇,350 页 ppt

  17. Tracxn:2025 全球飞行汽车行业市场研究报告(45 页)

  18. 谷歌:2024 人工智能短跑选手(AI Sprinters):捕捉新兴市场 AI 经济机遇报告(39 页)

  19. 【斯坦福博士论文】构建类人化具身智能体:从人类行为中学习

  20. 《基于传感器的机器学习车辆分类》最新 170 页

  21. 美国安全与新兴技术中心:2025 CSET 对美国人工智能行动计划的建议(18 页)

  22. 罗兰贝格:2024 人形机器人的崛起:从科幻到现实:如何参与潜在变革研究报告(11 页)

  23. 兰德公司:2025 从研究到现实:NHS 的研究和创新是实现十年计划的关键报告(209 页)

  24. 康桥汇世(Cambridge Associates):2025 年全球经济展望报告(44 页)

  25. 国际能源署:2025 迈向核能新时代

  26. 麦肯锡:人工智能现状,组织如何重塑自身以获取价值

  27. 威立(Wiley):2025 全球科研人员人工智能研究报告(38 页)

  28. 牛津经济研究院:2025 TikTok 对美国就业的量化影响研究报告:470 万岗位(14 页)

  29. 国际能源署(IEA):能效 2024 研究报告(127 页)

  30. Workday :2025 发挥人类潜能:人工智能(AI)技能革命研究报告(20 页)

  31. CertiK:Hack3D:2024 年 Web3.0 安全报告(28 页)

  32. 世界经济论坛:工业制造中的前沿技术:人工智能代理的崛起》报告

  33. 迈向推理时代:大型语言模型的长链推理研究综述

  34. 波士顿咨询:2025 亚太地区生成式 AI 的崛起研究报告:从技术追赶者到全球领导者的跨越(15 页)

  35. 安联(Allianz):2025 新势力崛起:全球芯片战争与半导体产业格局重构研究报告(33 页)

  36. IMT:2025 具身智能(Embodied AI)概念、核心要素及未来进展:趋势与挑战研究报告(25 页)

  37. IEEE:2025 具身智能(Embodied AI)综述:从模拟器到研究任务的调查分析报告(15 页)

  38. CCAV:2025 当 AI 接管方向盘:自动驾驶场景下的人机交互认知重构、变革及对策研究报告(124 页)

  39. 《强化学习自我博弈方法在兵棋推演分析与开发中的应用》最新 132 页

  40. 《面向科学发现的智能体人工智能:进展、挑战与未来方向综述》

  41. 全国机器人标准化技术委员会:人形机器人标准化白皮书(2024 版)(96 页)

  42. 美国国家科学委员会(NSB):2024 年研究与发展 - 美国趋势及国际比较(51 页)

  43. 艾昆纬(IQVIA):2025 骨科手术机器人技术的崛起白皮书:创新及未来方向(17 页)

  44. NPL&Beauhurst:2025 英国量子产业洞察报告:私人和公共投资的作用(25 页)

  45. IEA PVPS:2024 光伏系统经济与技术关键绩效指标(KPI)使用最佳实践指南(65 页)

  46. AGI 智能时代:2025 让 DeepSeek 更有趣更有深度的思考研究分析报告(24 页)

  47. 2025 军事领域人工智能应用场景、国内外军事人工智能发展现状及未来趋势分析报告(37 页)

  48. 华为:2025 鸿蒙生态应用开发白皮书(133 页

  49. 《超级智能战略研究报告》

  50. 中美技术差距分析报告 2025

  51. 欧洲量子产业联盟(QuIC):2024 年全球量子技术专利态势分析白皮书(34 页)

  52. 美国能源部:2021 超级高铁技术(Hyperloop)对电网和交通能源的影响研究报告(60 页)

  53. 罗马大学:2025 超级高铁(Hyperloop):第五种新型交通方式 - 技术研发进展、优势及局限性研究报告(72 页)

  54. 兰德公司:2025 灾难性网络风险保险研究报告:市场趋势与政策选择(93 页)

  55. GTI:2024 先进感知技术白皮书(36 页)

  56. AAAI:2025 人工智能研究的未来报告:17 大关键议题(88 页)

  57. 安联 Allianz2025 新势力崛起全球芯片战争与半导体产业格局重构研究报告

  58. 威达信:2025 全球洪水风险研究报告:现状、趋势及应对措施(22 页)

  59. 兰德公司:迈向人工智能治理研究报告:2024EqualAI 峰会洞察及建议(19 页)

  60. 哈佛商业评论:2025 人工智能时代下的现代软件开发实践报告(12 页)

  61. 德安华:全球航空航天、国防及政府服务研究报告:2024 年回顾及 2025 年展望(27 页)

  62. 奥雅纳:2024 塑造超级高铁(Hyperloop)的未来:监管如何推动发展与创新研究报告(28 页)

  63. HSOAC:2025 美国新兴技术与风险评估报告:太空领域和关键基础设施(24 页)

  64. Dealroom:2025 欧洲经济与科技创新发展态势、挑战及策略研究报告(76 页)

  65. 《无人机辅助的天空地一体化网络:学习算法技术综述》

  66. 谷歌云(Google Cloud):2025 年 AI 商业趋势白皮书(49 页)

  67. 《新兴技术与风险分析:太空领域与关键基础设施》最新报告

  68. 150 页!《DeepSeek 大模型生态报告》

  69. 军事人工智能行业研究报告:技术奇点驱动应用加速智能化重塑现代战争形态 - 250309(40 页)

  70. 真格基金:2024 美国独角兽观察报告(56 页)

  71. 璞跃(Plug and Play):2025 未来商业研究报告:六大趋势分析(67 页)

  72. 国际电工委员会(IEC):2025 智能水电技术与市场展望报告(90 页)

  73. RWS:2025 智驭 AI 冲击波:人机协作的未来研究报告(39 页)

  74. 国际电工委员会(IEC):2025 智能水电技术与市场展望报告(90 页)

  75. RWS:2025 智驭 AI 冲击波:人机协作的未来研究报告(39 页)

  76. 未来今日研究所 2025 年科技趋势报告第 18 版 1000 页

  77. 模拟真实世界:多模态生成模型的统一综述

  78. 中国信息协会低空经济分会:低空经济发展报告(2024 - 2025)(117 页)

  79. 浙江大学:2025 语言解码双生花:人类经验与 AI 算法的镜像之旅(42 页)

  80. 人形机器人行业:由 “外” 到 “内” 智能革命 - 250306(51 页)

  81. 大成:2025 年全球人工智能趋势报告:关键法律问题(28 页)

  82. 北京大学:2025 年 DeepSeek 原理和落地应用报告(57 页)

  83. 欧盟委员会 人工智能与未来工作研究报告

  84. 加州大学伯克利分校:面向科学发现的多模态基础模型:在化学、材料和生物学中的应用

  85. 电子行业:从柔性传感到人形机器人触觉革命 - 250226(35 页)

  86. RT 轨道交通:2024 年中国城市轨道交通市场数据报告(188 页)

  87. FastMoss:2024 年度 TikTok 生态发展白皮书(122 页)

  88. Check Point:2025 年网络安全报告 - 主要威胁、新兴趋势和 CISO 建议(57 页)

  89. 【AAAI2025 教程】评估大型语言模型:挑战与方法,199 页 ppt

  90. 《21 世纪美国的主导地位:核聚变》最新报告

  91. 沃尔特基金会(Volta Foundation):2024 年全球电池行业年度报告(518 页)

  92. 斯坦福:2025 斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191 页)

  93. 国际科学理事会:2025 为人工智能做好国家研究生态系统的准备 - 2025 年战略与进展报告(英文版)(118 页)

  94. 光子盒:2025 全球量子计算产业发展展望报告(184 页)

  95. 奥纬论坛:2025 塑造未来的城市研究报告:全球 1500 个城市的商业吸引力指数排名(124 页)

  96. Future Matters:2024 新兴技术与经济韧性:日本未来发展路径前瞻报告(17 页)

  97. 《人类与人工智能协作的科学与艺术》284 页博士论文

  98. 《论多智能体决策的复杂性:从博弈学习到部分监控》115 页

  99. 《2025 年技术展望》56 页 slides

  100. 大语言模型在多智能体自动驾驶系统中的应用:近期进展综述

  101. 【牛津大学博士论文】不确定性量化与因果考量在非策略决策制定中的应用

  102. 皮尤研究中心:2024 美国民众对气候变化及应对政策的态度调研报告:气候政策对美国经济影响的多元观点审视(28 页)

  103. 空间计算行业深度:发展趋势、关键技术、行业应用及相关公司深度梳理 - 250224(33 页)

  104. Gartner:2025 网络安全中的 AI:明确战略方向研究报告(16 页)

  105. 北京大学:2025 年 DeepSeek 系列报告 - 提示词工程和落地场景(86 页)

  106. 北京大学:2025 年 DeepSeek 系列报告 - DeepSeek 与 AIGC 应用(99 页)

  107. CIC 工信安全:2024 全球人工智能立法的主要模式、各国实践及发展趋势研究报告(42 页)

  108. 中科闻歌:2025 年人工智能技术发展与应用探索报告(61 页)

  109. AGI 智能时代:2025 年 Grok - 3 大模型:技术突破与未来展望报告(28 页)

上下滑动查看更多

OFDM(正交频分复用)是一种高效的多载波通信技术,它将高速数据流拆分为多个低速子流,并通过多个并行的低带宽子载波传输。这种技术具有高频谱效率、强抗多径衰落能力和灵活的带宽分配优势。 OFDM系统利用大量正交子载波传输数据,子载波间的正交性可有效避免码间干扰(ISI)。其数学表达为多个离散子载波信号的线性组合,调制和解调过程通过FFT(快速傅立叶变换)和IFFT(逆快速傅立叶变换)实现。其关键流程包括:数据符号映射到子载波、IFFT转换为时域信号、添加循环前缀以减少ISI、信道传输、接收端FFT恢复子载波数据和解调原始数据。 Matlab是一种广泛应用于科研、工程和数据分析的高级编程语言和交互式环境。在OFDM系统设计中,首先需掌握Matlab基础,包括编程语法、函数库和工具箱。接着,根据OFDM原理构建系统模型,实现IFFT/FFT变换、循环前缀处理和信道建模等关键算法,并通过改变参数(如信噪比、调制方式)评估系统性能。最后,利用Matlab的绘图功能展示仿真结果,如误码率(BER)曲线等。 无线通信中主要考虑加性高斯白噪声(AWGN),其在频带上均匀分布且统计独立。通过仿真OFDM系统,可在不同信噪比下测量并绘制BER曲线。分析重点包括:不同调制方式(如BPSK、QPSK)对BER的影响、循环前缀长度选择对性能的影响以及信道估计误差对BER的影响。 OFDM技术广泛应用于多个领域,如数字音频广播(DAB)、地面数字电视广播(DVB-T)、无线局域网(WLAN)以及4G/LTE和5G移动通信,是这些通信标准中的核心技术之一。 深入研究基于Matlab的OFDM系统设计与仿真,有助于加深对OFDM技术的理解,并提升解决实际通信问题的能力。仿真得到的关键性能指标(如BER曲线)对评估系统可靠性至关重要。未来可进一步探索复杂信道条件下的OFDM性能及系统优化,以适应不同应用场景
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值