进化并非赢家通吃

3c862830ca9a619b03c4bf146571257c.jpeg

来源:混沌巡洋舰

进化论是一种自我服务、适应环境和创新的机制,其一直趋向于远离平衡,23年的6月一篇PNAS研究,构建了关于机制的模型,解释复制、变异和自然选择是如何解释这些特征的。模型中,资源驱动的复制和竞争在搜索/竞争/选择的循环中运行。研究发现了以下几点: 

1)进化机需要多生物共存才能长期存在,并有能力跨越适应度局部最优,即共存而非赢家通吃对于进化的创新能力、跨越适应性低谷的能力以及抵御环境变化无常带来的灭绝的能力非常重要

2)  进化是由资源动态(如繁荣和萧条)驱动的,而不仅仅是由突变变化驱动的。在理解生物适应性方面,环境历史与突变的适应性景观同样重要

3)爬升适应性景观的动态机制必须有分工,就像蒙特卡洛计算机算法中的提议和接受一样:无偏见的搜索加上有偏向的功能评估。适应性棘轮需要在变异和选择步骤之间进行机理分离,这或许可以解释生物学为何使用不同聚合物(DNA 代表信息,蛋白质代表功能)来实现这种分工。

论文地址:https://www.pnas.org/doi/full/10.1073/pnas.2218390120

1045b4bc263cbadb5c7bd0d40c295905.jpeg

相关书籍:

进化如何可能-读《适者降临》

不同领域的相通的创新之道-读《如何解决复杂问题》

以下是论文部分翻译

背景

达尔文进化论是地球上生物适应环境的不懈动力。达尔文进化论也被称为 "适者生存",它是地球上能量、物质、水和食物平衡中最具智慧、创新和强大的驱动力之一。自 19 世纪 60 年代查尔斯-达尔文和赫伯特-斯宾塞的研究以来,适者生存 就一直被用于描述生物的适应性,例如达尔文笔下雀科鸟类的喙的形状、英格兰花斑蛾翅膀上的颜色图案以及许多其他的适应性。其基本运作原理众所周知: 基因编码蛋白质,蛋白质编码性状;通过突变探索变异;生物竞争有限的资源;自然选择保留那些能使物种更适合其环境的基因/蛋白质。

但是,作为一个基本原理问题,自然选择并没有被完全理解。选择压力是什么?为什么会有这种力量?自 35 亿年前生命诞生以来,是什么维持了其非凡的持久性?适者生存 类似于物理学中的变分原理,即一个系统探索其自由度并趋向于某些数学函数的最大值或最小值的状态,但它又有不同之处。变异原理是物理学的核心:小球向下滚动,趋向于重力势能最小的状态;气体分子扩散,趋向于熵最大的状态。生命系统不会趋向平衡。相反,它们在持续流入的驱动下,趋向于适应性、自私性和复杂性,这个过程数十亿年来从未停止过。进化的驱动力不是热力学第二定律,也不是趋向平衡。生物学中的适应度不同于物理学中的能量。物质平衡是走向终态的趋势,而适宜性则是跨越无数不同分子、作用机制和自由度的趋势,是跨越无数环境状况的机会主义优势。在此,我们将这些问题归结为进化是一种类似机器的循环。

ab9b54aef75def89ed10a79606e7d7cf.jpeg

图1:达尔文进化机器。(上图)(A)参考(野生型)生物种群在 t 时刻产生了功能性装置 X。(D) 优胜者 Y 产生了更多的种群,这些种群在 t + 1 时取代了旧的参照种群。 (下图) 在 X 与 Y 的竞争中,通过 Momsemble 搜索(阴影区域)产生的适应性景观的相应爬升。

并非赢者通吃

种群遗传学和生态学模型中通常体现的达尔文进化论观点是 "赢者通吃"(赢家通吃)。也就是说,即使一个亲本及其血统的优势再小,最终也会胜出,将所有其他竞争亲本赶尽杀绝。这被称为竞争性排他,是 "生态学研究的核心主题之一"。竞争排斥是指除非至少有 n 种不同的资源,否则 n 种物种无法共存。这就是说,能够共存的物种数量受到可用资源数量的限制。在只有一种资源的情况下,胜者为王。

然而,竞争排斥在现实中并不总是成立的。生物学中有许多和平共处的例子。其中一个例子是浮游生物的悖论,在这个悖论中,"许多物种有可能共存......都在争夺同一种物质"。对于明显违反竞争排斥思想的现象,人们给出了不同的解释。系统可能达不到稳态,也可能有更复杂的相互作用,如物种之间的合作耦合。在不同情况下同时包含 赢家通吃 和 和平共存 的一类重要模型。这种非线性可能源于各种机制:捕食者之间的相互干扰;或亲代不能无限密集或无限快速地繁殖后代。

934442ccfdf19c6c3bcd935ce47f5bba.jpeg

图2 比较赢者通常和和平共存的演化动力学

图2比较了允许和平共处的模式和赢家通吃的模式。图中显示了一种环境资源的繁荣(蓝线,高价值)和萧条(低价值)。该图说明了两点。首先,左侧显示了两个妈妈在单一资源上的 赢家通吃 竞争是如何导致灭绝的。橙色妈妈可以在萧条中生存下来。在经济繁荣时期,橙色妈妈会生出绿色妈妈。绿色妈妈足够优秀,在繁荣期赢得了胜利,"包揽 "了一切。然而,第二次萧条杀死了绿色,因此绿色和橙色都无法存活。赢家通吃 机制很脆弱: 在振荡环境中,完全灭绝的风险很高,因为并不是所有在繁荣期获胜的突变体都能在每次萧条期存活下来。即使 赢家通吃 在今天的繁荣期带来了良好的适应性,它也可能在明天的萧条期消亡。

其次,图上右侧显示了达尔文进化机器 模型中和平共处的群落对灭绝的抵抗力更强,能够在两次衰退中存活下来。和以前一样,橙色可以在所有的萧条中存活下来,而绿色则在一次突变中崛起。这一次,绿色并没有赢得所有。橙色仍然拥有少量种群--因为 达尔文进化机器允许共存稳态。第二次萧条杀死了绿色,但现在橙色潜伏者又重新崛起,因为它们并没有被绿色完全杀死。达尔文进化机器 对短期有利但长期不利的突变所造成的物种灭绝具有更强的抵抗力。这与众所周知的生物多样性对生态系统稳健性的重要性是一致的。

在 赢家通吃模型的世界中,每个生态位都有一个物种在填补,灭绝事件会使生态位空缺。如果这个生态位对生态系统至关重要(比如说,它是资源循环链的一部分),那么这个生态位的空缺就会导致其他依赖种群的崩溃。相比之下,在 和平共存 模式的世界中,"潜伏者 "可以挑起扛起社区的重担。这个问题还有其他解决方案,比如物种共存于多种资源中,并在生态位上重叠。

af0914e65f6ccd72b5f1ccfb1561cd67.jpeg

在图3中,前者翻越障碍是有成本(自由能)的。在后者中,有些成本是由非平衡驱动因素的。大量并行的 "妈妈 "以及潜伏者的共存所支付的。我们用山坡上的高尔夫球手来比喻健身谷是如何跨越的。由于进化需要一个具有持续资源可用性的非均衡驱动系统,这就好比漫无目的的高尔夫球手在广阔的地形上将高尔夫球上坡或下坡。在适应性景观上出现上升,只是因为这些点是事后选择的,而不是事先选定的。由于 DEM 并非赢家通吃,因此会有很多这样的高尔夫球手同时在这个空间中采样。人多力量大。

小优势如何累积

达尔文进化论与物理流的一个不同之处在于其主导成分。在物理学中,例如在河水流动中,平均流速大致是占优势的种群的速度,比如说来自河中央的种群的速度。但在进化论中,最终驱动主导地位的是适应性。适应性会提升 "更适合 "的序列出现的概率,无论它们与平均水平相差多远。一种表型可以从单个个体开始在群体中占主导地位。这是因为在达尔文进化中,细胞的速率会转换成种群的速率,而速率的差异就在 "妈妈制造妈妈 "的自动循环中。达尔文进化机器中发生的信号放大类型与简单的放大非常不同。放大器会使整个信号变大,包括安静和响亮的部分。在达尔文进化机器 中,只有 "最佳 "信号才会被放大(即 "最适合"),即使该信号非常微弱。打个比方,在一个拥挤的房间里,达尔文进化机器 会接收所有的噪音,然后只选出对你最重要的对话。

进化是如何利用微小优势的?考虑一个妈妈 A 吃一种资源并呈指数增长(暂时忽略其死亡率和资源因素),dA/dt ∼ kAAr。它发展出一个相当大的种群。最初,虽然 B 的总量远小于 A 的总量,但 B 在种群中的比例为 B/(A + B)≈B/A ∼ exp(Δkrt),其中 Δk = kB - kA。不难理解,如果变异妈妈的增长速度快于现有妈妈,那么它的种群分数就会增长。不同增长率的指数杠杆作用导致种群中的优势,这就是 达尔文进化机器 独特放大作用的本质--毕竟,生物学的原则是适者生存,而不是数量最多者生存--因此适用于一开始规模较小的种群,即单细胞水平。

进化的持续性,即随着时间推移自我维持的能力,不同于平衡热力学系统中的持续稳定性。前者需要在非平衡输入的驱动下维持非平衡通量。它是动态的,而不是静态的。但是,进化的持久性不仅仅是一个驱动系统。进化也是适应性的,也就是说,即使面对反复无常、无规律的不断变化的环境,进化也是持久的。达尔文进化机器 的这种适应性来自两个关键特征:i)妈妈制造妈妈的自催化作用,由于 dA/dt ∝ A,因此产生了指数增长机制;ii)方差,其采样率系数 k = k(s,r)取决于表型和环境资源。正是复制过程中的内在错误进一步保护了达尔文进化机器免于灭绝。由于速率 k(s, r) 取决于序列,而且在达尔文进化机器 模型中,许多不同序列之间和平共处,因此任何一个序列、品系或物种的死亡都不足以毁灭整个达尔文进化机器。

为什么变异在功能上必须有别于选择?

在所有适应性棘轮中,如计算蒙特卡洛,提议步骤与接受步骤是不同的。提议步骤必须尽可能不带偏见,并尽可能均匀、完整地对选项空间进行采样,而不预先判断在哪里会找到成功的选项。偏差和判断都集中在接受步骤中,而接受步骤则是为了提高适应性而进行选择。如果没有这种分离,适性棘轮就无法区分上坡和下坡。如果没有提议步骤和接受步骤的分离,机器就无法区分突变较差的好现状和突变较好的差现状。如果没有办法区分现状和建议的未来,进化就不会有适应性方向感。

猜测: 为什么有 DNA 和蛋白质这两种聚合物?

当今的生物学同时使用信息聚合物和功能聚合物--DNA 和蛋白质以满足图一中变异(b)和选择(c)之间的功能性区分的基本要求,可以合理解释为什么需要两种不同的聚合物。生物学通过使用不同类型的聚合物来实现有偏/无偏的分离。DNA 和 RNA 是信息性的,而蛋白质是功能性的。这里有一个合理的解释。由于可折叠聚合物的序列与功能之间的关系,或相应地由于发育过程中表型表达的偏差,蛋白质中存在偏差。DNA 中的信息是无偏见的,因为这些分子是坚硬的杆状链分子,具有双链和较高的持续长度。无论 DNA 的序列是什么,DNA 的构象都相对独立于序列。相比之下,蛋白质则具有结构-功能关系,因为它们可以折叠成不同的形状。生物学通过生物大分子这些不同的物理特性,将无偏见的搜索和提议与有偏向的功能和接受区分开来。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

1b465f5b1642eba16ea604cda42de0fc.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值