来源: 科技导报
本文讨论了自然科学理论革新的4种纯基础研究思维模式,即经典的还原论模式、数据驱动模式、AI生成协同模式和复杂系统思维模式,分析了这4种纯基础研究模式的特点和结构;将系统的思维方式概括为8个环节:组成、结构、属性、环境、行为、相态、演化和组织机制;并提出深化系统思维是当前理论革新的重要方向。
面对自然科学理论革新的纯基础研究,是指以追求真理、发现和革新自然科学理论为目标的科学研究活动。纯基础研究发现的科学理论,是对自然规律(真理)的逼近,属于人类可以共享的知识宝库中的精华。纯基础研究的动力主要来自个人求知欲产生的对科学的兴趣,而不是对物质享受的追求;因此,在市场经济占主导地位的社会中,真正从事纯基础研究的人很少,属于少数群体中的少数。他们没有直接改变世界,但是他们的思想逐渐感染了许多人,加速了人类改变世界的进程。
纯基础科学研究旨在发扬智人找规律的潜力,不断开拓全人类共享的认识自然规律的知识体系。纯基础研究的成果体现在大、中、小学的教科书和科学书刊上。在各门学科的教科书上,世界各民族对人类科学知识的贡献一目了然。中国的纯基础研究相对较弱的状况,引起了一些学者的关注。例如,袁冉东先生认为,中华儒家文化往往从功利和实用角度来看待自然,因此,还没有真正意义上的纯基础研究,他还就如何改进中国纯基础研究提出了重要建议。笔者认为,以追求真理为目的的纯基础研究思维模式,在中华文化中虽然不时也发生耀眼的闪光,但是没有形成连续传扬的基因。因此,讨论有关纯基础研究中的科学思维的问题,对厘清一些认识误区与提升中国知识界的纯基础研究水准是有益的。
纯基础研究与应用基础研究
从事纯基础研究的科学家有特殊的价值观。如果把他们的人生比作一条小船,驶向的目标是真理的圣地,驾驶它走向光明圣地之舵,不是他们天才的思想,而是2000年来科学家认同的科学理性等科学思维的准则。他们一方面认为,他的人生价值是为人类可以共享的知识库添砖加瓦,另一方面认为,革新科学理论一定对人类可持续的生存和发展有价值。因此,在纯基础研究初期,不必考虑革新科学理论的用途。在思维模式上,纯基础研究必须从市场经济思维的海洋中跳出来,使思想完全进入自然演化的认知时空,头脑像“出家人”那样离开世俗社会。科学家可以胡思乱想;不过他们在思考科学问题的时候不再胡思乱想,要遵循科学精神进行严格的理性思维。从事纯基础研究的科学家必须站在科学巨人的肩膀上,自由地想他人之不想,才能发展科学理论,因此,不仅他们的人数少之又少,了解他们的人也很少,研究的周期也可能很长;他们的研究主要依靠政府面上科学基金的资助。当然,纯基础研究的成果是必须公开发表的,因为任何科学理论的革新都必须经过科技界同行的质疑和检验。
和科学之舟瞄准真理不同,技术之舟也有舵,它瞄准市场。从事应用基础研究的科学家的思维模式不一样。他们从一开始就必须考虑科学理论的应用对象,必须与市场的需求紧密挂钩,发展新方法技术的应用理论,开发市场经济的软资源。由于有明确的应用目标,从事应用基础研究的科学家容易得到多方面的资助,出成果的概率也大大提高。应用基础研究的成果可以公开发表,也可以推迟公布,还可以不公开发表,演变为专利。
纯基础研究和应用基础研究都是“基础研究”,共同点是“找自然规律”的科学思维,前者主要针对普适性高的自然规律,后者主要针对局部性对象的行为规律。自然界指非人造的世界,由于自然界不会造假,对非人造世界的观测数据及其反映的规律是可信的。当然,找自然规律必须遵从一些共同的准则,如理性、客观、精准、系统等,也产生了多种思维模式。在自然科学发展历史中,“找自然规律”的科学思维模式是在不断变化的,本文讨论现今常见的4种模式。
4种科学思维模式
01
小数据时代经典的纯基础研究模式
自然科学理论是人类阐述自然规律的认知成果,阐述自然规律的理论需要通过实验或者科学预测,来证明新提出理论的正确性、客观性、准确性和普适性。在20世纪50年代以前的小数据时代,对自然现象的研究主要靠科学家有限的观测和逻辑推理,得到事物演化的模型,然后通过少量实验室实验来证实最可能的模型。由于观测和实验手段有限,取得的数据不多,在建立模型的抽象思维时必须简约,才能通过逻辑推理构建出因果关联模型,抽象出有一定普适性的科学理论。这里科学思维经过命题、抽象简约、建模优化和理论革新4个步骤,见图1(a)。
图1 科学思维模式的结构示意
一个时代的科学理论是当时知识界共同认知的自然规律。时代在前进,技术在发展,数据在积累,观测精度在提高;先验的科学理论的问题就可能暴露出来,质疑已有科学理论中的问题就成为科学研究的新动力。质疑产生出的新问题,通过类比分析和新的实验,可能使研究者进一步认识研究对象的属性和行为细节,产生新的概念和理论。对于复杂系统的行为研究,由于系统参数众多与关联形式复杂,小数据时代的这种认知自然规律的思维模式只能采取层层分解复杂系统的方法降低研究对象的复杂性,并通过简约对局部对象的行为进行定量分析,然后用叠加方法还原对系统整体行为的描述。这种认知自然规律的思维模式在认识论中被称为“还原论”,由于它忽略了系统局部之间的相互作用,经常受到质疑。
02
信息时代的基础研究模式与大数据时期的AI生成协同模式
在20世纪后半叶,西方世界进入二战后技术腾飞的时代。计算机、太空飞行器和互联网的出现,使世界进入信息时代,观测数据的取得和传播以惊人的速度扩大。计算机的发展在两方面大大超过了人脑,一是计算速度超快,二是可储存的数据超多。信息学的兴起,伴随出现离散数学、频谱分析、时间序列分析、小波多尺度分析、模式识别和人工智能等一系列新的应用信息科学分支,数据处理技术突飞猛进。于是,出现了一种新的科学研究模式——数据驱动研究。
开展数据驱动基础研究的初衷可能不是去解决某个科学问题或者验证某个科学假说,而是获取和利用关于研究对象的海量数据,并通过统计分析探索自然奥秘。图1(b)为数据驱动研发系统结构的示意图。大数据驱动研究不仅可揭示原有理论中存在不够客观和精确的问题,还可以提供研究对象行为的全过程和属性变化的细节记录,避免传统研究中不得已进行的过度简约,为抽象新概念、新模式和新理论提供根据。思维的每一个环节都与数据流和知识流交汇结合,科学理论的革新又反馈回知识库。
数据驱动基础研究方法的进一步发展,走向人工智能的机器生成,按人脑成长的模式设计会学习和认知的计算机。青年人的智能是通过十多年的学习和体验,逐渐完善大脑皮层中的知识库、经验库和指令库取得的;机器也可以通过人工智能的学习和体验,逐渐完善包含数据库、知识库和软件库的大模型,取得人类通用的部分智能。由于机器集中了许多人的智慧,经过深度学习和不断提高的算力,它的智力有可能超过个人的平均智力水平。通过人工智能的机器生成,可以创造出许多不同类型的虚拟世界,使21世纪的大变局变得更加复杂迷离。
一种AI生成的科学思维模式见图1(c),通过深度学习,大数据库和超级自然科学知识库连通生成相互融合大模型。AI大模型通常使用深度学习技术在海量数据上进行预训练与参数微调,具备对复杂高维数据进行挖掘和分析的能力,可以从海量数据中寻找变量之间的“隐藏”关联,从而发现自然界的一些内在规律。AI机器不仅可以超快地进行动力学过程模拟,还可以通过理解从原因到结果的映射,或通过优化目标函数来衡量计算输出与观测数据之间的偏差,快速求解反问题。通过从正、反两个方面分析问题,全面解决模型的优选和相互作用关联等问题,帮助建立新的科学理论,成为信息时代认知自然规律的人机协同新思维模式。
03
系统论的纯基础研究思维模式
系统论的纯基础研究思维模式是在还原论思维模式上发展起来的,认为系统必有其组分没有的整体涌现性,它们不能像还原论思维那样,仅用组元特性的叠加来说明。系统论认为,研究自然规律要同时研究系统的组元和整体,以及它们之间相互作用形成的组织。系统是由不同质的组元相互作用形成的组织。系统论研究系统的组成结构、行为属性、相态变异和演化全过程,核心是发现系统内在的自组织机制。系统内外的能量运动包含了组元与组元、组元与整体、整体与环境3个层次的相互作用,3个层次的存在反映了所有系统都具有等级结构的复杂属性;而等级结构就是系统非线性动力学作用的主导模型。
鉴于自然系统的复杂性、非线性,系统论主张通过长期观测数据来认知不同系统的共同规律和特殊规律。它特殊的思维方式可以概括为8个要素:组成、结构、属性、环境、行为、相态、演化和组织机制。这8个要素分为3个层次。组成、结构、属性和环境研究层次集中研究know what(是什么);行为、相态和演化层次研究know how(如何演化);组织机制层次研究know why(为什么会这样)。系统论的纯科学研究思维模式如图2所示,它首先研究对象现在的组成、结构和属性,然后在观测系统组元相互作用的基础上,研究系统的相态变化和演化。最后研究系统整体的组织与自组织机制,并反观其对系统结构的调整,预测系统的行为趋势。环境影响系统的行为属性和相态的稳定性,系统论思维还考虑系统整体与外部环境的相互作用。
图2 系统论的纯科学研究思维模式的结构示意
系统与环境相互作用可分为3种典型类型。与外界几乎没有能量与物质交换的系统称为孤立系统;与外界有能量交换但几乎没有物质交换的系统称为保守系统;与外界既有能量交换又有物质交换的系统称为开放系统。早期的地球是太阳系中的开放系统,现在的地球是能量保守系统。生物系统属于吸收环境能量的开放系统,具有高度自组织的耗散结构。无论是哪种类型的系统,其内在的自组织都是其生存的本质内涵。
例如,固体地球科学系统的认知的8个要素就包含了现代地学的众多学科。岩石学、矿物学和地层学对应固体地球系统的组成,地质构造学和大地构造学对应结构,地球物理学和地球化学对应属性,地震学、火山学和动力地质学对应行为,地质年代学、岩相古地理学、古生物学、矿藏学等学科对应固体地球系统的相态和演化。最后,地球动力学研究为什么能够如此演化,揭示固体地球系统内在的组织机制。可见,系统论的纯科学研究思维可以运用综合集成方法集成相关学科的理论体系,把不同领域的专业知识综合集成起来,从而获得关于复杂巨系统研究对象的全面认知。同时,不同的研究对象具有不同的组成、结构、属性、环境、行为、相态、演化和组织机制;把各种研究对象的系统要素搞清楚之后,才能形成完整的系统理论构架。
4种纯科学研究思维的比较
上述讨论了4种纯自然科学研究思维的模式,分别具有各自的特点和问题。其中,小数据时代的经典纯基础研究模式曾经是人类智慧的结晶,为近现代科学知识发现打下了基础。它现在是不是过时了呢?笔者认为还没有。作为个体的科学家,依然需要掌握经典的纯基础研究模式去探索广阔的未知世界,才能激发新的理念。经典的纯基础研究框架也是其他模式的基本框架,年轻的接班人也需要了解。当然,对于大科学时代的科研群体,只会经典的纯基础研究模式是远远不够的。
数据驱动基础研究方法可以通过统计发现研究对象的行为属性规律以及相态的变化和演化特征,但是难于揭示它们隐含的自组织规律。人工智能的机器生成人机协同新思维模式,有可能对高复杂度、高维度数据进行挖掘和分析,从海量数据中寻找出变量之间“隐蔽”的“关联”和大概率行为的“规律性”,这种“关联”和“规律性”有可能属于虚拟世界,并非真实的世界,因为机器产生的虚拟世界只是真实世界的一种映射。纯自然科学研究的思维模式要求远离市场谋利的思维,而为智能机器学习的数据就可能来自市场,研究智能机器的主体也是市场中的企业。可以预见,人工智能的机器生成思维模式和技术发明会在市场中蓬勃发展,但在纯自然科学研究思维中,只会成为一种重要的辅助工具;因为智能机器人不可能去想他人之不想,从而模仿前沿科学家跳跃式的创新。
系统论目前主要是关于系统概念和方法论的定性阐述,本身还不是一门发展成熟的系统科学。运用系统思想和数学方法阐明系统如何从混乱无序的热平衡态产生出有序结构,又如何从一种有序结构演化为另一种有序结构,建立起耗散结构论、协同论、突变论等自组织理论,把基础科学层次的系统研究推进了一大步,开创了纯自然科学研究的系统思维模式。此模式与社会科学中的系统思维模式有本质的区别;前者只涉及计算,后者同时涉及计算和算计。当前,对于人体、大脑和地球等复杂系统的深入研究,以及系统思维模式与人工智能的生成大模型结合起来,有可能形成一些自然科学理论革新的突破口。
全球科技界从事纯科学研究的人一向很少,从事技术研发的人数要多得多,这是正常的现象。技术理性和科学理性不同,在于尽量利用现代技术以最小的代价获取无风险的最大效益。中华儒家文化对于技术理性不存在对立,因此,即使目前纯基础研究还比较薄弱,中国在现代技术创新发展方面,也会很快走向世界前列。不过,在青少年中了解纯科学研究思维的人越多,原创性基础研究的人力资源就越丰富,从0到1的研究就能够活跃起来,中国就能涌现出许多高质量的科技理论创新成果。
作者简介:杨文采,地球物理学家,中国科学院院士。现任浙江大学地球科学学院教授,中国地球物理学会常务理事,中国地质学会常务理事,《地质论评》主编。曾任国家现代地质勘查工程中心主任,研究方向为地球物理正反演、地球成像和大陆动力学。
原文发表于《科技导报》2024年第10期,欢迎订阅查看。
未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。
如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”