本篇《自然》长文共4306字,干货满满,预计阅读时间13分钟,时间不够建议可以先“浮窗”或者收藏哦。
原文作者:Miryam Naddaf
芯片植入等神经活动解码技术能恢复患者的运动和说话能力,并帮助研究人员理解大脑的工作方式。
科学家研究了脑机接口(如图中的非侵入性帽子)会如何改变脑活动。来源:Silvia Marchesotti
无论是移动假臂,操控一个会说话的头像,还是快速打字,这些都是瘫痪人士已经能用脑机接口(BCI)做的事——脑机接口这类植入装置仅凭人的意念就能操控。
这类装置使用嵌入大脑的几十个到几百个电极捕捉神经活动。一个解码系统负责分析信号,并转换成指令。
虽然这背后的主要动力是帮助瘫痪人士恢复一些身体机能,但这种技术也能用来研究人类大脑的组织方式,而且分辨率超过了大部分其他技术。
科学家已经在用这些机会掌握大脑的一些基本原理。研究结果推翻了之前关于脑解剖学的假说,比如他们发现脑区的边界和职能其实比我们认为的更模糊。这类研究还能用来了解脑机接口会如何影响大脑,以及非常重要的——如何优化这些装置。
研究语音BCI的斯坦福大学神经科学家Frank Willett说,“置于人体内的脑机接口让我们记录到很多脑区的单个神经元活动,之前从没有过这种机会。”
这些脑机接口的测量时间也能比传统方法更长,加州大学旧金山分校的神经外科医生Edward Chang说,“脑机接口一直在打破纪录,它的记录周期已经不止几天,而是几个月、几年,”他说,“你可以研究的内容包括学习、可塑性,你还可以研究那些需要花很长时间才能理解的任务。”
记录历史
100年前就有人提出应该记录人类大脑的电活动。德国精神病学家Hans Berger在一名17岁男孩的头皮上贴了电极,这名男孩的颅骨在接受了脑肿瘤手术后留下了一个洞。当Berger在这个洞的上方进行记录时,他首次观测到了大脑振荡,并将这种测量方式命名为EEG(脑电图)。
研究人员立即意识到,从大脑内部记录的信息或许更有价值;Berger等人通过手术将电极植入皮质表面,借此研究大脑,诊断癫痫。植入电极记录的信息仍是确定癫痫发作开始位置的标准方法,这种方法能让癫痫通过手术治疗。
到了1970年代,研究人员开始用从动物大脑更深处记录的信号来控制外部设备,由此诞生了首个植入式脑机接口。
2004年,脊髓受伤后瘫痪的Matt Nagle成了接受长期植入式脑机接口的第一人,该脑机接口用多电极记录初级运动皮质内的个体神经元活动[1]。Nagle能用这个系统开关一个假手,还能用机械臂完成简单任务。
研究人员还用EEG读数——用贴在头皮上的非侵入电极收集——为脑机接口提供信号。这能让瘫痪人士控制轮椅、机械臂和游戏设备,但这些信号较弱,数据也没有侵入式装置可靠。
目前为止,约有50人植入了脑机接口,而人工智能、解码工具和硬件的进展也推动着领域进步。
比如,电极阵列的复杂度越来越高。名为Neuropixels的技术虽然尚未与脑机接口兼容,但已经用在了基础研究中。这个硅胶电极阵列的每一根都比人类头发丝还细,上面有近1000个传感器,能探测单个神经元的电信号。研究人员7年前就开始在动物体内使用Neuropixels阵列,过去三个月发表的两篇论文证明了这种技术能用于研究一些人类专属问题:大脑说话时如何发出和接收元音[2,3]。
商业开发活动也很活跃。1月,企业家Elon Musk创办的神经科技公司Neuralink首次在人体内植入了脑机接口。和其他脑机接口一样,这个植入设备也能记录单个神经元的信号,但不同的是,它还能与一个计算机无线连接。
虽然这些试验的主要动力是临床获益,但这些透视大脑的“窗口”也带来了关于大脑功能的意外发现。
边界模糊
教科书在描述脑区时会说它们有分离的边界或区室,但脑机接口记录显示有时并非如此。
去年,Willett和团队用植入式脑机接口让有运动神经元疾病(肌萎缩侧索硬化症)的患者“说话”。他们原以为名为中央前回的运动控制脑区内的神经元会按照它们对应的面部肌肉分组,比如下颌、咽喉、嘴唇或舌头。但是,控制不同对象的神经元其实乱成一团[4]。Willett说:“解剖结构十分混杂。”
他们还发现,Broca区这个被认为参与言语产生和发音的脑区几乎不含或只含有很少的关于单词、面部运动或音素(声音单元)的信息。Willett说:“它本身不参与言语产生有点奇怪。”之前其他技术也发现了这个很微妙的现象(见参考文献5)。
研究人员Frank Willett操作的软件能通过脑机接口将Pat Bennett试图说话的尝试翻译成屏幕上的词语。来源:Steve Fisch/Stanford Medicine
在2020的一篇关于运动的论文中[6],Willett和同事对运动有不同程度受限的两个人进行了信号记录,研究主要聚焦负责移动双手的运动前区皮质。他们在使用脑机接口时发现,该脑区含有全部四肢的神经编码,而不只是之前认为的只有手部的神经编码。这个发现挑战了已在医学教育中存在了90年之久的经典理论——即身体部位以地形图的形式在大脑皮质中表示。
Willett说:“这是只有在记录人体单个神经元活动时才能发现的事,而这种机会太少了。”
荷兰乌特勒支大学医学中心的认知神经科学家Nick Ramsey和团队在对应手部运动的运动皮质内植入了脑机接口,并观测到了类似结果[7]。大脑半球内的运动皮质通常会控制另一侧身体的运动。但当一个人尝试移动右手时,植入左脑的电极会同时接收到左右手的信号,这是个意料之外的发现,Ramsey说,“我们想知道这对运动来说是否重要。”
运动很依赖协调性,脑活动必须同步一切,Ramsey解释道。比如伸手臂会影响平衡,所以大脑必须管理全身的变化,这或许能解释这种分散的活动。他说:“这类研究有很多我们以前没想到的潜力。”
对某些科学家来说,脑解剖结构的边界模糊其实并不意外。我们对大脑的理解基于对这个复杂器官大致组织方式的平均测量结果,意大利帕多瓦大学的信息工程师Luca Tonin表示。个体情况肯定会偏离平均值。
伦敦帝国理工学院的神经科学家Juan Álvaro Gallego说:“我们的大脑在细节上是有差异的。”
对其他人来说,从寥寥数人身上得出的结果需要谨慎解读。“我们对获得的每一条信息都要持保留态度,不能脱离背景去解读,”Chang说,“仅仅因为我们能记录单个神经元,并不表示那些就是最重要的信息或是全部真相。”
灵活思考
脑机接口技术还能帮助研究人员揭示大脑如何思考和想象的神经模式。
荷兰马斯特里赫特大学的计算神经科学家Christian Herff专门研究大脑如何编码想象言语(imagined speech)。他的团队开发出了能在受试者小声说话或不动嘴唇或发声的想象说话时产生语音的植入式脑机接口[8]。这个脑机接口在小声说话和想象说话中接收到的脑信号与发声的说话很类似。两者有着相同的脑区和活动模式,但不是一模一样,Herff说。
他说,这意味着即使有些人不能说话,他还是可以想象说话,可以使用脑机接口。Herff说:“这能极大地增加临床上使用这类言语脑机接口的人数。”
事实证明,即使瘫痪人士的身体没有反应,但他们保留了说话或运动的程序,这能帮助研究人员确定大脑的可塑性,也就是说大脑能在多大程度上重塑和重新模拟其神经通路。
已知大脑损伤、外伤和疾病会改变神经元之间的连接强度,导致神经环路重构,或是形成新的连接。比如,对脊髓损伤大鼠的研究表明,曾控制如今瘫痪四肢的脑区会开始控制仍有机能的身体部位[9]。
但脑机接口研究模糊了这个结论。美国匹兹堡大学的神经工程师Jennifer Collinger和她的同事让一名30多岁的脊髓损伤男性使用一种皮质内的脑机接口。他依然能移动手腕和手肘,但手指全部瘫痪了。
Collinger的团队发现,原始的手部地图保留在了他的大脑中[10]。当这名男子试着动手指时,团队在运动脑区看到了活动,虽然他的手其实并没有动。
脑机接口技术正在帮助瘫痪人数说话,并帮助理解大脑的解剖结构。来源:Mike Kai Chen/The New York Times/Redux/eyevine
“我们看到了很典型的组织结构,”她说,“它们在受伤前后是否有过任何细微变化,我们很难确定。”Collinger说,这不是说大脑没有可塑性。但有些脑区在这方面的可塑性可能更大一些。她说:“比如,感觉皮质的可塑性好像比运动皮质的可塑性更差。”
在导致大脑受损的疾病(如卒中)中,脑机接口能和其他干预搭配使用,训练新的脑区来“接管”受损脑区的工作。这种情况下,“大脑在调动原来不参与这类功能的脑区来执行任务。”研究如何在康复训练中用脑机接口诱导可塑性的神经科学家José del R. Millán说。
在一项临床试验中,Millán和同事训练了14名有慢性卒中的受试者使用了6周的非侵入性脑机接口[11],慢性卒中是在卒中发作后6个月或更久开始的一种长期病症,其特征为康复速度开始减慢。
在一组受试者中,脑机接口与一个装置相连,该装置能用电流激活瘫痪肌肉的神经,这种治疗手段名为功能性电刺激(FES)。每当脑机接口解码受试者试图伸手的举动时,它能刺激控制伸手腕和手指的肌肉。对照组也使用了相同的装置,但只接收随机电刺激。
Millán团队通过EEG成像发现,使用脑机接口引导FES的受试者的受影响脑半球的运动脑区连接性比对照组更高。久而久之,脑机接口-FES受试者能伸展双手,并且他们的运动恢复能在基于BCI的康复治疗结束后继续延续6-12个月。
脑机接口对大脑有何影响?
在Millán的研究中,脑机接口帮助引导大脑的学习过程。这种人与机器间的反馈环路是脑机接口的一个关键元素,能实现对脑活动的直接控制。受试者能学会调整大脑注意力,实时改进解码设备的输出。
瑞士日内瓦大学神经工程师Silvia Marchesotti说,虽然大部分研究都关注如何改善脑机接口并提升他们的编码性能,“但很少有人关注使用脑机接口的时候,大脑里究竟发生了什么。”
Marchesotti研究了当使用脑机接口生成语言时,大脑会发生哪些变化——他们不止关注脑机接口的所在位置,而是更多区域。团队发现,在15名健康受试者在5天里学习控制一个非侵入性脑机接口的期间,他们整个大脑对语言很重要的活动的频带增加了,而且注意力越来越集中了[12]。
Marchesotti说,一个可能解释是大脑对脑机接口的控制效率提高了,完成任务需要的神经资源减少了。
研究脑机接口使用期间的大脑行为是一个新兴领域,研究人员希望这能造福使用者并提升脑机接口系统。比如,记录整个大脑的活动能让科学家检测是否需要在其他解码位点增加电极来提升准确性。
进一步理解大脑结构或能建造出更好的解码器,降低错误率。在不久前发布的一篇预印本论文[13]中,Ramsey和同事表明,语音解码器在使用者说一句话和听一句话之间会产生困惑。他们在接收癫痫手术的5个人的腹侧感觉运动皮质内植入了脑机接口,该脑区通常是言语解码的目标。他们发现,受试者在说一段话时的脑活动模式与他们聆听同一段话录音时的脑活动模式非常相似。这提示言语解码器在尝试生成言语时可能无法区分听到的和说出的话。
当前的脑机接口研究范围还很窄,临床试验能招募的人数也很有限,关注点主要为参与运动功能的脑区。
Herff说:“研究脑机接口的研究人员数量至少是使用脑机接口患者人数的10倍。”
研究人员很珍惜能直接记录人类神经元的难得机会,但他们的动力也来自于帮助患者恢复身体功能和医疗需求。Collinger说:“这是神经外科,不是儿戏。”
对Chang来说,这个领域本身就混合着各种发现和临床应用。“如果我们只做基础研究,或是只研究脑机接口,很难想象最后的成果会是怎样的,”他说,“这两方面齐头并进对于推动整个领域向前似乎都是必不可少的。”
参考文献:
1.Hochberg, L. R. et al. Nature 442, 164–171 (2006).
2.Leonard, M. K. et al. Nature 626, 593–602 (2024).
3.Khanna, A. R. et al. Nature 626, 603–610 (2024).
4.Willett, F. R. et al. Nature 620, 1031–1036 (2023).
5.Tate, M. C. et al. Brain 137, 2773–2782 (2014).
6.Willett, F. R. et al. Cell 181, 396–409 (2020).
7.Vansteensel, M. J. et al. N. Engl. J. Med. 375, 2060–2066 (2016).
8.Angrick, M. et al. Commun. Biol. 4, 1055 (2021).
9.Ghosh, A. et al. Nature Neurosci. 13, 97–104 (2010).
10.Ting, J. E. et al. J. Neurophysiol.126, 2104–2118 (2021).
11.Biasiucci, A. et al. Nature Commun. 9, 2421 (2018).
12.Bhadra, K., Giraud, A. L. & Marchesotti, S. Preprint at bioRxiv https://doi.org/10.1101/2023.09.11.557181 (2023).
13.Schippers, A., Vansteensel, M. J., Freudenburg, Z. V. & Ramsey, N. F. Preprint at medRxiv https://doi.org/10.1101/2024.01.21.23300437 (2024).
原文以Mind-reading devices are revealing the brain’s secrets标题发表在2024年2月20日《自然》的新闻特写版块上
© nature
Doi: 10.1038/d41586-024-00481-2
点击阅读原文查看英文原文
想要你的研究拥有更高的影响力和可见度?与Springer Nature一起发表OA论文,近3000种期刊涵盖所有学科,为您提供高质量的开放获取选项。
扫码了解OA发表选项并下载所有期刊列表
版权声明:
本文由施普林格·自然上海办公室负责翻译。中文内容仅供参考,一切内容以英文原版为准。欢迎转发至朋友圈,如需转载,请邮件China@nature.com。未经授权的翻译是侵权行为,版权方将保留追究法律责任的权利。
© 2024 Springer Nature Limited. All Rights Reserved
星标我们🌟,记得点赞、在看+转发哦!