命中率达60%,AlphaFold预测受体的三维结构,加速药物开发

8332decc812052236ac373e002e5b30b.jpeg

来源:ScienceAI

编辑:白菜叶

人工智能正在彻底改变蛋白质结构预测,为药物设计提供前所未有的机遇。

为了评估对配体发现的潜在影响,瑞典乌普萨拉大学(Uppsala University)和瑞典卡罗林斯卡学院(Karolinska Institute)的研究人员利用人工智能创建了一种受体的未知三维结构模型。

在这个模型中,TAAR1 受体是一种重要的靶蛋白,可用于开发治疗精神疾病的药物。激活 TAAR1 的药物分子在治疗精神分裂症和抑郁症方面显示出良好的效果。

该团队比较了使用 AlphaFold 机器学习方法生成的蛋白质结构和传统同源性建模的虚拟筛选。

研究人员用超过 1600 万种化合物对接到 TAAR1 模型上,分别从 AlphaFold 和同源性模型筛选中筛选出 30 和 32 种排名靠前的化合物。其中 25 种是 TAAR1 激动剂,药效范围为 12 至 0.03 μM。

AlphaFold 筛选的命中率(60%)比同源模型高出两倍多,并且发现了最有效的激动剂。

其中一种具有良好选择性和类药物特性的 TAAR1 激动剂,在野生型小鼠中表现出生理和抗精神病作用。

该研究以「AlphaFold accelerated discovery of psychotropic agonists targeting the trace amine–associated receptor 1」为题,于 2024 念 8 月 7 日发布在《Science Advances》。

7f467f90b6d422734fa1cf6805ce1575.jpeg

在药物开发中,实验方法通常用于确定目标蛋白质的三维结构并了解分子如何与它们结合。这些信息对于有效地设计药物分子是必需的。但是,确定结构的过程可能很困难,这意味着这种策略存在局限性。

由于人工智能方法的发展,现在可以比以前更准确地预测蛋白质的结构。

在最新的研究中,乌普萨拉大学和卡罗林斯卡学院的研究团队进一步研究了 AlphaFold 模型在基于结构的虚拟筛选中的实用性,并将 AlphaFold 的性能与传统的同源性建模进行了比较。

与之前的研究不同,该团队进行了前瞻性对接筛选,对排名靠前的化合物进行了实验评估,突出了两种结构预测方法之间的差异。

74015090268d516a20167bb0294e7f8f.jpeg

图示:同源性和 AlphaFold 模型的虚拟筛选性能。(来源:论文)

微量胺相关受体 1 (TAAR1) 是一种 G 蛋白偶联受体(GPCR),在研究期间尚无其实验结构,因此被选为虚拟筛选的目标。TAAR1 属于 A 类(视紫红质样)GPCR 家族,可由多种微量胺激活,包括酪胺、β-苯乙胺 (β-PEA) 和儿茶酚胺代谢物(如 3-甲氧基酪胺)。

过去十年来,TAAR1 作为多种神经精神疾病(尤其是精神分裂症)的潜在治疗靶点,引起了临床研究人员的广泛关注。多巴胺能、血清素能和谷氨酸能神经元中 TAAR1 的激活似乎对细胞放电具有整体抑制作用,而互补的行为观察表明激动剂可有效治疗药物成瘾、躁郁症和精神分裂症。

两种 TAAR1 激动剂 Ulotaront(Sunovion)和 Ralmitaront(Hoffmann–La Roche)已进入临床试验,用于治疗多种疾病,包括发作性睡病、帕金森病中的精神病和精神分裂症。

a61feb352ac13d0944ee36e4b60715a4.jpeg

图示:TAAR1 与 β-PEA 复合物的预测结构和实验结构。(来源:论文)

该团队首先使用同源性建模和 AlphaFold 预测了 TAAR1 的结构。然后将 1600 万种化合物库对接到每组模型中,然后对排名靠前的分子进行实验评估。

两种虚拟筛选都识别出了 TAAR1 配体,但与之前的观察结果相反,AlphaFold 模型的表现明显优于同源性模型。

研究人员从 AlphaFold 对接筛选中选择了 30 种排名靠前的化合物,其中 18 种(60%)被确认为 TAAR1 激动剂,命中率比同源模型高出两倍多。

621b43648cf12ff9c20e9f526bd1ceee.jpeg

图示:化合物 65 的体内功效和抗精神病样活性。(来源:论文)

几次命中显示出纳摩尔效力,并且对结构-活性关系、选择性和药代动力学特性的探索导致了选择体内评估的候选药物。这种先导化合物可以调节体温,并在野生型小鼠中表现出抗精神病药样作用,但在 TAAR1 基因敲除小鼠中则没有。

该研究展示了 AlphaFold 模型如何成功用于基于结构的虚拟筛选活动,以确定开发抗精神病药物的先导化合物。

「用人工智能生成的结构的精确度令人惊叹——我简直不敢相信。结果还表明,用人工智能建模明显优于传统方法。我们现在可以对以前只能梦想的受体采用同样的策略。」乌普萨拉大学的 Jens Carlsson 解释道。

论文链接:https://www.science.org/doi/10.1126/sciadv.adn1524

相关报道:https://phys.org/news/2024-08-ai-3d-receptors-drug.html

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

e2d032d04384e139deb888c62d9aa1bc.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值